

UNIVERSIDAD PRIVADA DE TACNA

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"DIFERENCIA EN LA RESISTENCIA DE LOS CONCRETOS POR EFECTO DE LOS TIPOS DE CEMENTO COMERCIALIZADOS EN LA CIUDAD DE TACNA, 2016"

TESIS PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Presentada por:

Bach. Ing. RODRIGO ALEXANDER VICENTE MERCADO

TACNA - 2016

AGRADECIMIENTO

A Dios quien supo guiarme por el buen camino, darme fuerzas para seguir adelante y no desmayar en los problemas que se presentaban, enseñándome a encarar las adversidades sin perder la dignidad ni desfallecer en el intento.

A mi Ángel de la guarda, a mi Ángel guía y todos los seres de luz que me ayudaron, en ellos confío plenamente, por darme aliento e impulsarme a ser siempre el mejor.

A la Escuela profesional de ingeniería Civil de la Facultad de Ingeniería de la Universidad Privada de Tacna por haberme aceptado a ser parte de ella y poder concluir esta carrera, a mis docentes que brindaron sus conocimientos y apoyo para seguir adelante.

A mi Asesor de tesis ing. Milton Cesar Gordillo Molina por haberme brindado la oportunidad de recurrir a sus conocimientos y experiencia profesional.

DEDICATORIA

A Mi Papá Carlos

Ha pasado el tiempo y siempre me has dado lo mejor, excelente profesional porque no hay mejor palabra que te describa y un ejemplo a seguir, eres y serás siempre el arquitecto de mi vida, te has esforzado y trabajando duro sin importar el cansancio, siempre recibí tu amor, corrección y comprensión. La perseverancia, la constancia y sobre todo hacer las cosas bien, son solo algunas de las cualidades que me sigues inculcando ¡Gracias papa!

A Mi Mamá Sara

Por su incondicional amor, por ser amiga y compañera ayudándome a crecer, por estar siempre conmigo, por los regaños que merecía y nunca entendía, por ser quien eres, por ser tan linda, jovial, por ser la mujer fuerte aguerrida y valiente

A Mis Familiares

A mis Tías, Tíos y primos, en especial a mi tía Edith por ser mi principal consejera desde pequeño, por ser la persona que confía en mí y me brinda todo su apoyo; a mi prima Paty por ser como una hermana mayor, por su inmenso cariño hacia mis padres y hacia mí, por su ejemplo de emprendimiento y trabajo

RESUMEN

La presente investigación se desarrolla en el escenario de la ciudad de Tacna en donde se viene comercializando una serie de cementos y se ha podido percibir que son pocos o casi nulos los estudios comparativos que se han realizado sobre la resistencia de los concretos por el efecto de los tipos de cementos comerciales en la ciudad.

La presente investigación tiene como objetivo general, determinar las diferencias en las resistencias de los concretos por efecto de la utilización de los distintos tipos de cemento comercializados en la ciudad de Tacna, 2016. Para tal efecto se eligió una muestra representativa que permitió analizar y determinar una respuesta al problema de investigación, la misma que estuvo constituida por 180 pruebas, de acuerdo al método de diseño de mezcla ACI-Comité 211 y método de diseño Walker. La muestra implico la realización de tres (03) tipos de mezclas con 30 pruebas cada una, estratificadas en sus pruebas por edades de 7, 14 y 28 días.

El proceso de investigación implicó la recolección de información relevante sobre los tipos de cementos más comunes comercializados en la ciudad, así como los agregados, luego se realizaron los análisis de los agregados a través de los ensayos de laboratorio, seguidamente se estableció el tipo de diseño de mezcla a través de los métodos ACI-Comité 211 y Walker, seguidamente la dosificación y la elaboración de las muestras cilíndricas de concreto, luego se realizaron las pruebas de resistencia a la compresión de las muestras cilíndricas de concreto, y finalmente los análisis estadísticos que nos han permitido establecer las diferencias en la resistencia de los concretos por efecto de los tipos de cemento comercializados.

El tipo de investigación es mixta de tipo descriptivo, comparativo y experimental, que busca brindar respuestas a interrogantes asociadas a la diferencia en la resistencia del concreto por efecto de la aplicación de los diferentes tipos de cementos que se comercializan en la ciudad de Tacna.

Entre los resultados se tiene que la diferencia en la resistencia de los concretos a la compresión Vs. Tiempo a las edades de 7, 14 y 28 días, según el Método ACI-Comité 21 con agregado redondeado y según el Método Walker con agregado angular, son efectos de la utilización de los diferentes tipos de cemento comercializados en la ciudad de Tacna (Sol Portland Tipo-I, Yura Tipo HE–Alta Resistencia Inicial, y Portland Puzolánico Yura IP-Alta Durabilidad)

Entre las conclusiones podríamos señalar que la diferencia en la resistencia de los concretos se da por efecto de la utilización de los distintos tipos de cemento en donde: el concreto elaborado con cemento Sol Portland Tipo-I obtiene una mejor resistencia inicial a los 7 días que los concretos elaborados con cemento Yura HE—Alta Resistencia Inicial y Portland Puzolánico Yura IP-Alta Durabilidad. El concreto elaborado con cemento Yura HE—Alta Resistencia Inicial supera en resistencia a los 14 días al concreto elaborado con cemento Sol Portland Tipo-I, manteniendo esa tendencia también a los 28 días. El concreto que alcanza menor resistencia es el elaborado con el cemento Portland Puzolánico Yura IP-Alta Durabilidad.

Entre las recomendaciones podemos señalar que es necesario realizar adecuados estudios comparativos con diferentes diseños de mezcla para obtener una adecuada resistencia del concreto con diferentes tipos de cementos comercializados en la ciudad de Tacna; así como elaborar un análisis minucioso de las propiedades físicas de los

agregados, como también promover la importancia y significado que tiene el proceso de fabricación del concreto aplicando los diseños de mezcla por los Métodos ACI-Comité 211, y diseño de mezcla Método Walker, ya que resultan ser más funcionales.

ABSTRACT

This research is conducted on the stage of the city of Tacna where it markets a range of cements and has been perceived that few or almost no comparative studies have been conducted on the strength of concrete by the effect of types of commercial cements in the city.

This research has as general objective, to determine differences in the resistance of the concrete due to the use of different types of cement sold in the city of Tacna, 2016. For this purpose a representative sample to analyze and determine which allowed elected an answer to the research question, the same consisted of 180 tests, according to the method of ACI mix design - design method Committee 211y Walker. The sample involved the completion of three (03) types of mixtures with 30 tests each, in their tests stratified by ages 7, 14 and 28 days.

The research process involved gathering relevant information on the most common types of cement sold in the city as well as aggregates, then analyzes aggregated through laboratory tests were performed, then the type of design was established mixing through the ACI Committee 211 and Walker, then dosing and preparation of cylindrical samples of concrete methods, then testing compressive strength of cylindrical concrete samples were made, and finally statistical analysis We have allowed us to establish differences in the resistance of the concrete effect of the types of cement commercialized.

The research is mixed descriptive, comparative and experimental, which seeks to provide answers to questions related to the difference in concrete strength due to the application of different types of cement sold in the city of Tacna.

Among the result it is that the difference in the resistance of the concrete compressive vs. time at ages 7, 14 and 28 days, according to the ACI-Committee added 21 Method according to Walker rounded and angular aggregate method, are effects of using different types of cement sold in the city of Tacna (Sol Portland Type-I, Type HE-Yura High Initial Resistance, and Portland pozzolan Yura IP-High Durability)

Among the findings we could point out that the difference in the resistance of the concrete are given, the effect of using different types of cement sold in the city of Tacna where: concrete made with cement Sol Portland Type-I get better initial resistance at 7 days that concrete made with cement Yura HE-high early strength pozzolan and Portland Yura IP-high durability. The concrete made with cement Yura HE-High Initial Resistance resistance exceeds 14 days to concrete made with Portland cement Sol Type-I, maintaining that trend also at 28 days. The concrete reaches the least resistance is made with Portland cement pozzolan Yura IP-high durability.

Among the recommendations we note that you need to perform appropriate comparative studies with different designs mixed to obtain adequate strength of concrete with different types of cement sold in the city of Tacna; and develop a detailed analysis of the physical properties of aggregates, as well as promote the importance and significance of the manufacturing process of the concrete applying mix designs by Methods ACI Committee 211, and mix design Walker method, and which they prove to be more functional.

ÍNDICE DE CONTENIDOS

DED.	\sim	$T \cap$	וח	ГΛ
1) 1 1 1	ИΑ		IK I	ΙА

AGRADECIMIENTO

RESUMEN

ABSTRACT

	PAG.
INDICE DE CONTENIDOS	1
INDICE DE TABLAS	8
INDICE DE GRAFICOS	13
INDICE DE IMÁGENES	14
INTRODUCCIÓN	16
CAPÍTULO I: GENERALIDADES	
1.1 PLANTEAMIENTO Y FORMULACION DEL PROBLEMA	18
1.1.1 Formulación del Problema	18
1.2 JUSTIFICACIÓN E IMPORTANCIA DE LA INVESTIGACIÓN	20
1.3 OBJETIVOS	22
1.3.1 Objetivo General	22
1.3.2 Objetivos Específicos	22
1.4 FORMULACION DE LA HIPÓTESIS	22
1.5 VARIABLES E INDICADORES	22
1.5.1 Identificación de la Variable Independiente	23
1.5.1.1 Indicadores de la Variable Independiente	23

1.5.2 Identificación de la Variable Dependiente	23
1.5.2.1 Indicadores de la Variable Dependiente	23
1.6 METODOLOGÍA E INSTRUMENTOS DE INVESTIGACION	
1.6.1 Tipo de Investigación	24
1.6.2 Diseño de Investigación	25
1.6.3 Ámbito de Estudio	25
1.6.4 Muestreo	25
1.6.5 Técnicas e Instrumentos de Investigación	26
1.6.6 Esquema Metodológico	27
CAPÍTULO II: MARCO TEÓRICO	
2.1 ANTECEDENTES DEL ESTUDIO	
2.2 BASES TEÓRICAS	
2.2.1 Bases Teóricas sobre el Cemento	31
2.2.2 Bases Teóricas sobre la Resistencia del Concreto	33
2.3 DEFINICIONES A USAR EN EL ESTUDIO	37
2.3.1 Definiciones de Conceptos Estadísticos	37
2.3.1.1 Media Aritmética	38
2.3.1.2 Desviación Estándar	38
2.3.1.3 Coeficiente de Variación	39
2.3.1.4 Cartas de Control	39
2.3.2 Análisis Estadístico sobre Comercialización del Cemento	
en el Perú y el Departamento de Tacna	40
2.4 CARACTERISTICAS DE LOS MATERIALES	44
2.4.1 El Cemento	44

2.4.1.1 Cemento Soi Portiand Tipo-1	44	
2.4.1.2 Cemento Yura Tipo HE-Alta Resistencia Inicial	45	
2.4.1.3 Cemento Portland Puzolánico Yura IP-Alta Durabilidad	47	
2.4.2 El agua	50	
2.4.3 Los Agregados	52	
2.4.3.1 Agregado Fino	52	
2.4.3.2 Agregado Grueso	54	
2.4.3.3 Granulometría de los Agregados	57	
2.4.3.4 Modulo de Fineza de los Agregados	58	
2.4.3.5 Peso Específico de los Agregados	59	
2.4.4. El Aire		
2.5 PARAMETROS BASICOS EN EL COMPORTAMIENTO DEL		
CONCRETO	61	
2.5.1 Trabajabilidad	61	
2.5.2 Resistencia	63	
2.5.3 Durabilidad	63	
CAPITULO III: ENSAYOS		
3.1 ENSAYOS EN LABORATORIO PARA DETERMINAR LAS		
PROPIEDADES FISICAS DE LOS AGREGADOS	65	
3.1.1 Ensayo de Contenido de Humedad	66	
3.1.2 Ensayo de Granulometría del Agregado y Módulo de Fineza	71	
3.1.3 Ensayo de Peso Específico y Absorción	75	
3.1.4 Ensayo de Peso Unitario Suelto y Compacto	80	

CAPITULO IV: DISEÑO DE MEZCLAS

4.1	DISEÑO DE MEZCLA POR METODO ACI-COMITÉ 211 CON	
	AGREGADO REDONDEADO	85
	4.1.1 Selección de Resistencia Requerida (f´cr)	86
	4.1.2 Cálculo de la Resistencias Requerida	87
	4.1.3 Selección del Tamaño Máximo Nominal del Agregado Grueso	87
	4.1.4 Selección del Asentamiento	87
	4.1.5 Selección del Volumen Unitario de Agua de Diseño	87
	4.1.6 Selección del Contenido de Aire Atrapado	88
	4.1.7 Selección de la Relación Agua/Cemento (a/c) por Resistencia	
	a Compresión	89
	4.1.8 Determinación del Factor Cemento	90
	4.1.9 Determinación del Contenido de Agregado Grueso	91
	4.1.10 Determinación de la Suma de los Volúmenes Absolutos	
	de Cemento, Agua de Diseño, Aire y Agregado Grueso y Peso	
	del Agregado	92
	4.1.11 Correcciones por Humedad y Absorción	93
	4.1.12 Presentación Final del Diseño	99
4.2	DISEÑO DE MEZCLA POR EL MÉTODO WALKER CON	
	AGREGADO ANGULAR	99
	4.2.1 Selección de Resistencia Requerida (f´cr)	100
	4.2.2 Selección del Tamaño Máximo Nominal del Agregado Grueso	101
	4.2.3 Selección del Asentamiento	101
	4.2.4 Selección del Contenido de Agua	101
	4.2.5 Selección del Contenido de Aire Atrapado	102

	4.2.6 Selección de la resistencia Agua/Cemento (a/c) por	
	Resistencia a Compresión	102
	4.2.7 Determinación del Factor Cemento	103
	4.2.8 Cálculo de Volumen Absoluto de la Pasta	104
	4.2.9 Determinación del Volumen Absoluto del Agregado Total	105
	4.2.10 Determinación del Agregado Fino	105
	4.2.11 Volumen Absoluto del Agregado	107
	4.2.12 Pesos Secos de los Agregados	107
	4.2.13 Correcciones por Humedad y Absorción	108
	4.2.14 Presentación Final del Diseño	112
CAl	PITULO V: ELABORACION DE ESPECÍMENES DE CONCRETO	
5.1	ELABORACIÓN DE ESPECÍMENES PARA COMPARACION DE	
	LA RESISTENCIA DE LOS CONCRETOS CON DIFERENTES	
	DISEÑOS DE MEZCLA	114
	5.1.1 Procedimiento	114
	5.1.2 Calidad de los Moldes Cilíndricos	115
	5.1.3 Codificación de los Especímenes Cilíndricos de Concreto	116
	5.1.4 Curado del Concreto	116
	5.1.5 Consideraciones Generales para Elaboración de Especímenes	116
CAl	PITULO VI: RESULTADOS DE LA INVESTIGACION	
6.1	PRUEBAS DE RESISTENCIA (ENSAYOS) A COMPRESION DE	
	LOS ESPECIMENES DE CONCRETO	119
6.2	RESULTADOS DE LAS PRUEBAS (ENSAYOS) A COMPRESION DE	

	LOS ESPECIMENES DE CONCRETO	120
6.3	ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS	128
	6.3.1 Resistencia a la Compresión vs. Tiempo a los 7,14 y 28 días,	
	Según Diseño por Método ACI- Comité 211, Agregado	
	Redondeado	128
	6.3.2 Resistencia a la Compresión vs. Tiempo a los 7,14 y 28 días,	
	Según Diseño Walker, Agregado angular	132
	6.3.3 Resumen de Resistencia a la Compresión vs. Tiempo a los 7,14 y	
	28 días, Según Diseño ACI-Comité 211, Agregado Redondeado	137
	6.3.4 Resumen de Resistencia a la Compresión vs. Tiempo a los 7,14	
	y 28 días, Según Diseño Walker, Agregado Angular	138
6.4	VERIFICACION DE LA HIPOTESIS DE INVESTIGACION	140
CAI	PITULO VII: PROPUESTA DE REDISEÑO	
7.1	DENOMINACION DE LA PROPUESTA	142
7.2	FUNDAMENTACION	142
7.3	OBJETIVO	143
7.4	CALCULO DE LA RESISTENCIA PROMEDIO	143
	7.4.1 Cálculo de la Resistencia Requerida	143
	7.4.2 Selección del Tamaño Máximo Manual del Agregado Grueso	144
	7.4.3 Selección del Asentamiento	144
	7.4.4 Selección del Volumen Unitario	144
	7.4.5 Selección del Contenido de Aire Atrapado	145
	7.4.6 Selección de la Relación Agua/Cemento (a/c) por Resistencia	
	a la Compresión	146

	7.4.7 Determinación del Factor Cemento	147
	7.4.8 Determinación del contenido de Agregado Grueso	148
	7.4.9 Determinación de la Suma de los Volúmenes Absolutos del	
	Cemento, Agua de Diseño, Aire y Agregado Grueso,	
	y peso del Agregado Fino	149
	7.4.10 Correcciones por Humedad y Absorción	150
	7.4.11 Presentación Final del Diseño	152
7.5	CONCLUSIONES	152
CAP	ITULO VIII: CONCLUSIONES Y RECOMENDACIONES	
8.1	CONCLUSIONES	153
8.2	RECOMENDACIONES	156
BIBLIOGRAFIA		158
ANE	ANEXOS	

ÍNDICE DE TABLAS

	PAG.
TABLA N° 1: Detalle de las Pruebas Realizadas Método de Diseño ACI – COMITÉ 211	26
TABLA Nº 2: Detalle de las Pruebas Realizadas Método de Diseño WALKER	26
TABLA N° 3: Participación de Grupos Económicos Sector Cementero en el País	40
TABLA N° 4: Venta Local de Cemento por Empresa, Según Departamento 2011-2015	43
TABLA N° 5: Características Técnicas del Cemento Yura Tipo He-Alta Resistencia	46
TABLA Nº 6: Características Técnicas del Cemento Portland Puzolánico Yura IP Alta Durabilidad	48
TABLA Nº 7: Resumen de los Requisitos Químicos de los Diferentes Tipos de Cementos	48
TABLA Nº 8: Resumen de los Requisitos Físicos de los Diferentes Tipos de Cementos	49
TABLA Nº 9: Resumen de la Resistencia a la Compresión a los 1, 3, 7 y 28 Días según las Normas Técnicas de los Diferentes Tipos de Cementos	49
TABLA Nº 10: Requisitos Permisibles del Agua de Mezcla Utilizados	5 1
en la Producción del Cemento	51

TABLA N° 11:	Límites de Graduación del Agregado Fino	53
TABLA Nº 12:	Límites de Sustancias Perjudiciales en Agregado Fino	53
TABLA N° 13:	Clasificación de la Arena por Modulo de Finura	59
TABLA Nº 14:	Contenido de Humedad del Agregado Fino	68
TABLA N° 15:	Contenido de Humedad del Agregado Grueso Redondeado	69
TABLA Nº 16:	Contenido de Humedad del Agregado Grueso Angular	70
TABLA N° 17:	Análisis Granulométrico de Agregado Fino	72
TABLA Nº 18:	Análisis Granulométrico de Agregado Grueso Redondeado	73
TABLA Nº 19:	Análisis Granulométrico de Agregado Grueso Angular	74
TABLA Nº 20:	Peso Específico del Agregado Fino Según Muestra	77
TABLA Nº 21:	Absorción del Agregado Fino Según Muestra	77
TABLA Nº 22:	Peso Específico del Agregado Grueso Redondeado Según Muestra	78
TABLA Nº 23:	Absorción del Agregado Grueso Redondeado Según Muestra	78
TABLA Nº 24:	Peso Específico del Agregado Grueso Angular Según Muestra	79
TABLA N° 25:	Absorción del Agregado Grueso Angular Según Muestra	79

TABLA Nº 26: Peso Unitario Suelto y Compactado del Agregado Fino Según Muestra	82
TABLA Nº 27: Peso Unitario Suelto y Compactado del Agregado Grueso Redondeado Según Muestra	83
TABLA Nº 28: Peso Unitario Suelto y Compactado del Agregado Grueso Angular Según Muestra	84
TABLA Nº 29: Resistencia del Concreto a la Compresión Promedio	86
TABLA Nº 30: Requerimientos Aproximados de Agua de Mezclado y Contenido de Aire para Diferentes Valores de Asentamiento y Tamaños Máximos de Agregados	88
TABLA Nº 31: Aire Atrapado Según Tamaño Máximo Nominal	89
TABLA Nº 32: Relación Agua - Cemento por Resistencia a la Compresión	90
TABLA Nº 33: Volumen del Agregado Grueso por Unidad de Volumen de Concreto	91
TABLA Nº 34: Resistencia del Concreto a la Compresión Promedio	100
TABLA Nº 35: Contenido de Agua en el Concreto	101
TABLA Nº 36: Aire Atrapado Según el Tamaño Máximo Nominal	102
TABLA Nº 37: Relación Agua - Cemento por Resistencia a la Compresión	103
TABLA Nº 38: Porcentaje de Agregado Fino	106
TABLA Nº 39: Requisitos Para el Pisón	117

TABLA Nº 40:	Resultados del Ensayo a Compresión: Método ACI-Comité	
	211, Cemento Sol Portland Tipo-I	121
TABLA Nº 41:	Resultados del Ensayo a Compresión: Método ACI-Comité	
	211, Cemento Yura Tipo HE-Alta Resistencia Inicial	122
TABLA Nº 42:	Resultados del Ensayo a Compresión: Método ACI-Comité	
	211, Cemento Portland Puzolánico Yura IP-Alta	
	Durabilidad	123
TABLA Nº 43:	Resultados del Ensayo a Compresión: Método Walker, Cemento	
	Sol Portland Tipo-I	124
TABLA N° 44:	Resultados del Ensayo a Compresión: Método Walker, Cemento	
	Yura Tipo HE-Alta Resistencia Inicial	125
TABLA Nº 45:	Resultados del Ensayo a Compresión: Método Walker,	
	Cemento Portland Puzolánico Yura IP-Alta Durabilidad	126
TABLA Nº 46:	Resumen del Ensayo a Compresión Simple. Método de Diseño	
	Teórico ACI-Comité	127
TARI A Nº 47.	Resumen del Ensayo a Compresión Simple. Método de Diseño	
	Teórico Walker	127
TABLA N° 48:	Requerimientos Aproximados de Agua de Mezclado y	
	Contenido de Aire para Diferentes Valores de	
	Asentamientos y Tamaños Máximos de Agregado	145
TABLA Nº 49:	Aire Atrapado Según Tamaño Máximo Nominal	146
TABLA Nº 50:	Relación Agua – Cemento por Resistencia a la	

Compresión	147

TABLA Nº 51: Volumen Agregado Grueso por Unidad de Volumen de Concreto 148

ÍNDICE DE GRAFICOS

GRAFICO	Nº 1: Curva de Resistencia a la Compresión Vs. Tiempo a la edad de	
	7 días, Según Método ACI-Comité 211, Agregado	
	Redondeado	128
GRAFICO	Nº 2: Curva de Resistencia a la Compresión Vs. Tiempo a la edad de	
	14 días, Según Método ACI-Comité 211, Agregado	
	Redondeado	129
GRAFICO	Nº 3: Curva de Resistencia a la Compresión Vs. Tiempo a la edad de	
	28 días, Según Método ACI-Comité 211, Agregado	
	Redondeado	131
	Redondeddo	131
GRAFICO	Nº 4: Curva de Resistencia a la Compresión Vs. Tiempo a la edad de	
	7 días, Según Método Walker, Agregado Angular	132
GRAFICO	Nº 5: Curva de Resistencia a la Compresión Vs. Tiempo a la edad de	
	14 días, Según Método Walker, Agregado Angular	134
GD 1 D7 GG		
GRAFICO	Nº 6: Curva de Resistencia a la Compresión Vs. Tiempo a la edad de	
	28 días, Según Método Walker, Agregado Angular	135
GRAFICO	Nº 7: Resumen de Resistencia a la Compresión Vs. Tiempo a la edad	
	De 7, 14, 28 días, Según Método ACI=.Comité 211,	
	Agregado Angular	137
	rigiogado ringuiai	157
GRAFICO	Nº 8: Resumen de Resistencia a la Compresión Vs. Tiempo a la edad	
	De 7, 14, 28 días, Según Método ACI=.Comité 211,	
	Agregado Angular	138

INDICE DE IMAGENES

IMAGEN Nº 1: Transporte del agregado	161
IMAGEN Nº 2: Contenido de Humedad del Agregado Fino	161
IMAGEN Nº 3: Contenido de Humedad del Agregado Grueso Redondeado	162
IMAGEN Nº 4: Contenido de Humedad del Agregado Grueso Angular	163
IMAGEN Nº 5: Granulometría del Agregado Fino	164
IMAGEN Nº 6: Granulometría del Agregado Grueso	165
IMAGEN Nº 7: Peso Específico del Agregado Fino	166
IMAGEN Nº 8: Peso Específico del Agregado Grueso	167
IMAGEN Nº 9: Absorción del Agregado Fino	168
IMAGEN Nº 10: Absorción del Agregado Grueso	168
IMAGEN Nº 11: Peso Unitario Suelto y Compactado del Agregado Fino	169
IMAGEN Nº 12: Peso Unitario Suelto y Compactado del Agregado Grueso	170
IMAGEN N° 13: Pesado de los Agregados	171

IMAGEN	Nº 14:	Materiales para la elaboración de los especímenes cilíndricos	
		de concreto	172
IMAGEN	N° 15:	Procedimiento para la elaboración de los especímenes cilíndricos	
		de concreto	172
IMAGEN	Nº 16:	Ensayo a la Compresión de los especímenes cilíndricos de	
		concreto	176

INTRODUCCIÓN

Cuando se habla de la resistencia del concreto, generalmente se hace referencia a la resistencia a compresión del concreto endurecido, la etapa de endurecimiento inicia con el fraguado final del concreto y prosigue en el tiempo dependiendo totalmente de las condiciones de curado del material. La resistencia especificada a la compresión del concreto (f c), es la resistencia a la compresión empleada en el diseño.

El cemento es el material pulverizado que por adición de una cantidad conveniente de agua forma una pasta aglomerante capaz de endurecer, tanto bajo el agua como en el aire.

El presente estudio pretende determinar las diferencias en las resistencias de los concretos por efecto de la utilización de los distintos tipos de cemento comercializados en la ciudad de Tacna.

El problema parte de que se ha podido percibir que existe un desconocimiento sobre la diferencia en la resistencia de los concretos por efecto de los tipos de cementos comercializados que al ser mal utilizado podría afectar las estructuras de concreto en su desempeño estructural y, en ocasiones, también pueden tener repercusiones económicas.

La cobertura del estudio ha permitido explorar las diferencias que existen en la resistencia de los concretos por efectos de los tipos de cementos comercializados en la ciudad de Tacna.

El presente estudio aporta al campo de la investigación y construcción ya que permitirá proporcionar información sobre el comportamiento de los concretos elaborados con agregados de canteras locales y los cementos más comercializados en Tacna.

La investigación se ha dividido en ocho capítulos, el primero trata de las generalidades, el segundo desarrolla el marco teórico, el tercero comprende los ensayos para determinar las propiedades físicas de los agregados, el cuarto el diseño de mezclas, el quinto la elaboración de los especímenes de concreto, el sexto resultados de la investigación, el sétimo referido al aporte y el octavo a las conclusiones y recomendaciones.

CAPÍTULO I

GENERALIDADES

1.1 PLANTEAMIENTO Y FORMULACIÓN DEL PROBLEMA

Cuando se habla de la resistencia del concreto, generalmente se hace referencia a la resistencia a compresión del concreto endurecido. La etapa de endurecimiento se inicia con el fraguado final del concreto y prosigue en el tiempo dependiendo totalmente de las condiciones de curado del material.

En la construcción el concreto es el producto resultante de la mezcla de un aglomerante (generalmente cemento, arena, grava o piedra chancada y agua) que al fraguar y endurecer adquiere una resistencia similar a la de las mejores piedras naturales.

El cemento es el material más activo de la mezcla de concreto, por lo tanto, su característica y sobre todo su contenido (proporción) dentro de la mezcla tiene una gran influencia dentro de la resistencia del concreto a cualquier edad; el cemento junto a una fracción de agua del concreto componen la parte pura cuyas propiedades dependen de la naturaleza del cemento y de la cantidad de agua utilizada. Esta pasta pura desempeña un papel activo: envolviendo los granos inertes y rellenando los huecos de los áridos, entonces confieren al concreto sus características de resistencia mecánica, de contracción y de fisurabilidad.

La situación económica del país ha generado un clima favorable en el sector construcción, así como un gran consumo per-cápita del cemento en Tacna, en ese sentido, se vienen ofertando una serie de cementos comerciales entre los que podíamos destacar: Cemento Sol Portland Tipo–I, Cemento Yura Tipo HE–Alta Resistencia

Inicial Cemento Portland Puzolánico Yura IP-Alta Durabilidad, entre otros, que varían desde sus componentes y tecnología utilizada en su fabricación, así como en las diferentes propiedades químicas, físicas y de resistencia a la compresión, que inciden en el comportamiento del concreto.

Según reportes estadísticos, Compendio Estadístico Perú 2015, Empresa Productoras de Cemento y Asociación de Productores de Cemento ASOCEN se tiene que al 2014, la Venta Local por Empresa, según Departamento 2011-2014 por tonelada, se tiene que al año 2014 para el departamento de Tacna el mayor consumo de cemento está dado por los cementos que distribuye la empresa Cementos Yura en los Tipo IP, y He seguido de Unión Andina de Cemento S.A.A. fusionada entre Cementos Lima S.A.A. y Cemento Andino con su producto Cemento Sol Tipo I.

Sin embargo se ha podido percibir que son pocos o casi nulos los estudios comparativos que se han realizado sobre la resistencia de los concretos por el efecto de los tipos de cementos comerciales en la ciudad de Tacna que puedan contribuir a afianzar los conocimientos acerca de los concretos con estos tipos de cemento, así como a la adecuada preparación del concreto que requiere de un buen control y supervisión en la dosificación de agregados, agua y cemento según las normas ACI-Comité 211 y Walker.

En el sector construcción de la ciudad de Tacna se ha observado que existe un desconocimiento sobre la diferencia en la resistencia a la compresión de los concretos por efecto de los tipos de cementos que las empresas cementeras comercializan y que al ser mal utilizados podrían afectar las estructuras de concreto en su desempeño estructural y, en ocasiones, también pueden tener repercusiones económicas.

En ese contexto podemos señalar que esta problemática se debe al desconocimiento de las diferencias en la resistencia a la compresión de los concretos por efecto de la aplicación de los diferentes tipos de cementos que se comercializan en la ciudad de Tacna; de allí que se formula el siguiente problema de investigación que la interrogante debe responder.

1.1.1 Formulación del Problema

¿Cuáles son las diferencias en la resistencia a la compresión de los concretos por efecto de la utilización de los diferentes tipos de cementos de mayor comercialización en la ciudad de Tacna, 2016?

1.2 JUSTIFICACIÓN E IMPORTANCIA DE LA INVESTIGACIÓN

La presente investigación se desarrolla en el escenario de la ciudad de Tacna en donde se viene comercializando una serie de cementos; siendo este el material más activo de la mezcla de concreto, por tanto sus características y sobre todo su contenido (proporción) dentro de la mezcla tienen una gran influencia en la resistencia del concreto a cualquier edad, por otro lado el consumo del cemento está directamente relacionado con el aumento de la población en la región y con el desarrollo de las diferentes obras de ingeniería civil e infraestructura entre otros, se puede pensar que, al menos a corto plazo, el hormigón y el mortero seguirán siendo los medios más barato de construir, y su consumo no cesará de aumentar proporcionalmente al crecimiento de la población y al desarrollo, con lo que el cemento que es el componente activo de aquellos también lo hará.

Entonces resulta de Vital utilidad el presente estudio porque para obtener una adecuada resistencia del concreto un factor importante es conocer a través de un estudio comparativo la resistencia de los concretos empleando los cementos comercializados en Tacna; en este contexto la investigación se justifica por las siguientes razones:

Por su originalidad que surge de los requerimientos actuales de investigación tecnológica práctica que permitirá proporcionar información sobre el comportamiento de los concretos elaborados con agregados de canteras locales y los tipos de cemento más comercializados en la ciudad de Tacna, en donde los datos que se obtengan de los ensayos a compresión de la resistencia del concreto versus el tiempo permitirá afianzar los conocimientos acerca de estos; siendo la cantera Arunta ubicada en el distrito de Coronel Gregorio Albarracín Lanchipa, la principal fuente de abastecimiento de agregados (grava y arena) a las diferentes obras que se ejecutan en nuestra ciudad como edificaciones, pavimentos, aceras entre otros.

Por el significado que tiene la preparación del concreto, fundamentalmente en el proceso de fabricación con un adecuado control y supervisión en la dosificación de agregados, agua y cemento, siguiendo los pasos recomendados por el método ACI (American Concrete Institute) y el método de Walker.

Por sus implicancias prácticas en que la investigación sobre la resistencia del concreto pueda servir para mejorar la calidad y seguridad en obras de los municipios, gobierno regional, empresas constructoras y otras construcciones en caso de no contar con estudios previos.

Porque el estudio nos permitirá constatar que los métodos de diseño de mezcla ACI y Walker son funcionales para los diferentes tipos de cemento que se comercializan en Tacna.

Hechos que justifican de sobremanera la concreción del presente trabajo de investigación.

1.3 OBJETIVOS

1.3.1 Objetivo General

Determinar las diferencias en la resistencia a la compresión de los concretos por efecto de la utilización de los diferentes tipos de cementos de mayor comercialización en la ciudad de Tacna, 2016

1.3.2 Objetivos Específicos

- A. Analizar las propiedades físicas de los agregados según la Norma ASTM-C 33 o NTP 400.037
- B. Elaborar los diseños de mezcla con los Métodos ACI-Comité 211 con agregado redondeado, y diseño de mezcla Método Walker con agregado angular.
- C. Comparar la resistencia de los concretos a la compresión con diferentes diseños de mezcla según el tipo de cemento.

1.4 FORMULACIÓN DE LA HIPOTESIS

La diferencia en la resistencia a la compresión de los concretos se produce por efecto de la utilización de los diferentes tipos de cementos de mayor comercialización en la ciudad de Tacna, 2016.

1.5 VARIABLES E INDICADORES

1.5.1 Identificación de la Variable Independiente

Tipos de cemento

1.5.1.1 Indicadores de la Variable Independiente

- Características técnicas
- Propiedades físicas
- Propiedades generales
- Aplicaciones
- Durabilidad

1.5.2 Identificación de la Variable Dependiente

Resistencia del concreto

1.5.2.1 Indicadores de la Variable Dependiente

- Tipos de agregados
- Granulometría
- Módulo de fineza
- Peso específico
- Aire
- Agua

- Relación agua cemento
- Diseño de mezcla
- Resistencia a la compresión
- Curvas de resistencia a la compresión
- Trabajabilidad
- Durabilidad
- Inpermeabilidad
- Ensayos

1.6 METODOLOGÍA E INSTRUMENTOS DE INVESTIGACIÓN

1.6.1 Tipo de Investigación

El tipo de investigación es mixta de tipo descriptivo, comparativo y experimental, debido a que se recolecta información relevante en los tipos de cemento a utilizar en un mismo fenómeno o aspecto de interés (diseño de mezcla) para luego caracterizarlos en base a comparaciones en datos generales o categorizarlos uno a uno (curva f´c versus tiempo) y experimental porque es un proceso sistemático y una aproximación científica a la investigación en la cual se manipula una o más variables y controla y mide cualquier cambio en otras variables.

1.6.2 Diseño de Investigación

Se trata de un diseño cuasi experimental que nos permite realizar diversos análisis estadísticos para la toma de datos en los cuales se tuvieron muestras cilíndricas (testigos de 6"x12") para su posterior ensayo.

El método de diseño de mezcla utilizado está dado por el método ACI-Comité 211 y método de diseño Walker.

También se realizaron ensayos en el concreto endurecido que nos permitió determinar sus características mecánicas.

1.6.3 Ámbito de Estudio

El ámbito de estudio está referido a la ciudad de Tacna en el año 2016.

1.6.4 Muestreo

La población de estudio está constituida por 180 pruebas, de acuerdo al método de diseño de mezcla del ACI- Comité 211 y método de diseño Walker.

La muestra implica la realización de tres (03) tipos de mezclas con 30 pruebas cada una, estratificadas en sus pruebas por edades de 7, 14 y 28 días.

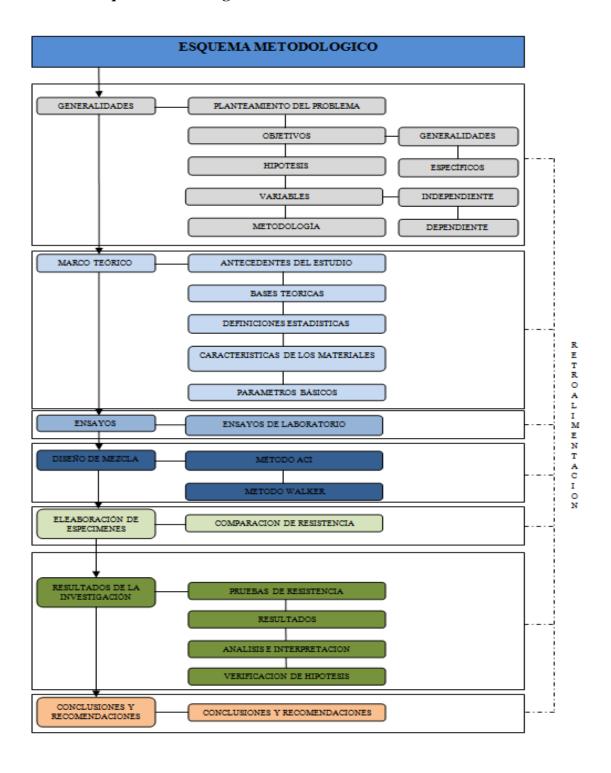
TABLA N° 1 DETALLE DE LAS PRUEBAS REALIZADAS MÉTODO DE DISEÑO ACI-COMITÉ 211

METODO DE DISEÑO	DISEÑOS CON TIPO DE CEMENTO	EDADES	N° DE PRUEBAS
	A) PORTLAND PUZOLANICO YURA IP-ALTA DURABILIDAD	7 DIAS	10
		14 DIAS	10
	TORA II -ALI'A DURADILIDAD	28 DIAS	10
A CT C V	B) YURA TIPO HE-ALTA RESISTENCIA INICIAL	7 DIAS	10
ACI-Comité 211		14 DIAS	10
211		28 DIAS 10	10
		7 DIAS	10
	C) SOL PORTLAND-TIPO I 14 DIA	14 DIAS	10
		28 DIAS	10
TOTAL			90

Fuente: Elaboración Propia

TABLA N° 2 DETALLE DE LAS PRUEBAS REALIZADAS MÉTODO DE DISEÑO WALKER

METODO DE DISEÑO	DISEÑOS CON TIPO DE CEMENTO	EDADES	N° DE PRUEBAS
	A) PORTLAND PUZOLANICO YURA IP-ALTA DURABILIDAD	7 DIAS	10
		14 DIAS	10
	TORA II -ALIA DORADILIDAD	28 DIAS 10	10
	B) YURA TIPO HE-ALTA RESISTENCIA INICIAL	7 DIAS	10
Walker		14 DIAS	10
		28 DIAS	10
		7 DIAS	10
	C) SOL PORTLAND-TIPO I	PORTLAND-TIPO I 14 DIAS 10	10
		28 DIAS	10
TOTAL			90


Fuente: Elaboración Propia

1.6.5 Técnicas e Instrumentos de Investigación

La técnica empleada fue la observación científica directa, participante, estructurada, tanto en campo y laboratorio, que nos brindó la información que se deseó obtener la misma que fue registrada para posterior análisis.

Los instrumentos utilizados se basaron en fichas, registros descriptivos, fotografías y videos.

1.6.6 Esquema Metodológico

Fuente: Elaboración propia

CAPÍTULO II

MARCO TEÓRICO

2.1 ANTECEDENTES DEL ESTUDIO

Sobre el presente trabajo de investigación, no se han desarrollado trabajos similares en Tacna; sin embargo hemos podido identificar el trabajo de investigación denominado "ESTUDIO COMPARATIVO DE CONCRETO SIMPLE Y REFORZADO CON FIBRAS DE ACERO DRAMIX Y WIRAND, EMPLEANDO CEMENTO ANDINO TIPO V", Corcino Albornoz, Vanesa Cecilia (2007). Proyecto de Tesis para Optar el Título de Ingeniero Civil, Lima – Perú, en donde se aprecia las siguientes conclusiones:

"En cuanto a las propiedades mecánicas del concreto endurecido, de acuerdo a los ensayos realizados se observa que la resistencia a la compresión si bien aumenta a medida que la mezcla de concreto contiene mayor porcentaje de fibra de acero; este aumento es muy pequeño. Se puede decir, que la adición de fibra de acero no tiene mayor influencia en el aumento de resistencia de compresión del concreto. El aporte de las fibras a la resistencia a la compresión del concreto es que evita que este tenga una falla frágil y explosiva, dándole ductilidad al compuesto." (p.19)

Respecto a la diferencia con el trabajo que se realiza, es que el trabajo de investigación que realizamos busca comparar la resistencia a la compresión de concretos simples empleando distintos cementos que se comercializan en Tacna, sin la utilización de fibras de acero, ni la utilización del cemento Tipo V.

Otro trabajo está referido a "ESTUDIO COMPARATIVO ENTRE TECNOLOGIAS DE PRODUCCION DE CONCRETO: MIXER Y DISPENSADOR", trabajo de investigación presentado por Carrillo Siancas, Shirley Marina (2003), Tesis para Optar el Título de Ingeniero Civil, Piura- Perú, en donde se aprecian las siguientes conclusiones:

"La más evidente conclusión es que la resistencia a la compresión (f'c) aumenta conforme la relación Agua/Cemento (w/c) va disminuyendo, sin importar el slump ni la tecnología de despacho de concreto usada.

"Asimismo las mezclas de concreto elaboradas con relaciones agua/cemento altas, nos dan resultados de resistencia muy aproximados entre sí, sin importar, como se dijo antes, la tecnología, ni el slump."

"Para el caso de relaciones agua/cemento bajas no se puede afirmar que se obtiene las mismas resistencias a la compresión al tratarse de una misma relación agua/cemento. Luego se mencionada amanera de hipótesis que en el dispensador existe una reducción de resistencia a la compresión al tratar de buscar mezclas trabajables y conversar la misma relación agua/cemento; y esta disminución de cemento al ser muy grande, en este concreto ya no prima la relación W/C, sino más bien prima la reducción de cemento; luego se encuentra una mezcla que le falta material cementante y esto se ve reflejado en la disminución de la resistencia."

"Antes de iniciar un diseño de mezcla, nos debemos basar en el método ACI, pero de allí se tiene que ir haciendo correcciones. Este método es muy conservador porque trabaja no con una resistencia a la compresión sino con una resistencia a la compresión promedio (f´cr >f´c) que incluye un factor de seguridad. Es decir el f´c de

diseño es el f´c requerido. Por todo lo mencionado anteriormente, podemos decir que el método ACI tiene limitaciones para elaborar concretos en el Perú, pero nos da una buena idea referencial para partir un diseño óptimo." (p.110, 111)

Respecto a la diferencia con el trabajo que se realiza, es que nuestro trabajo de investigación está basado en la comparación de la resistencia a la compresión por el uso de distintos cementos y diferentes diseños de mezcla.

El trabajo denominado "ESTUDIO COMPARATIVO A LA COMPRESION DE LOS CONCRETOS ELABORADOS CON CEMENTOS TIPO I Y TIPO III, MODIFICADOS CON ADITIVOS ACELERANTES Y RETARDANTES", Castellón Corrales, Harold y De la Ossa Arias, Karen (2013), Tesis para optar el Título de Ingeniero Civil, Cartagena de Indias – Colombia. En donde se aprecian las siguientes conclusiones:

"Para la buena elaboración del concreto y sus resultados óptimos, es de gran importancia que el ingeniero siga las proporciones que especifica el diseño de mezcla, así mismo debe regirse a las normas y especificaciones que garanticen una buena calidad del mismo."

"El cemento tipo III desarrolla altas resistencias a edades tempranas, debido a que, aunque en sus propiedades físicas es similar al Tipo I, su composición química es diferente y además sus partículas han sido molidas más refinadamente; influenciada también por el alto porcentaje de Silicato Tricalcico".

"La dosificación de aditivos debe hacerse siguiendo las instrucciones de los fabricantes, pues utilizados en cantidades menores o mayores a las recomendadas no producen los efectos deseados sobre la resistencia del concreto." (p.101, 102)

Respecto a la diferencia con el trabajo que se realiza, es que el presente trabajo de investigación busca la comparación de trabajar con tres tipos de cemento comerciales, Cemento Portland Puzolánico Yura IP—Alta Durabilidad, Cemento Yura Tipo HE—Alta Resistencia Inicial, Cemento Sol Portland Tipo—I, sin la utilización de aditivos ni retardantes; estos cementos son de uso común en la ciudad de Tacna teniendo distintas características a los empleados en otro ámbito de estudio como es el caso de Colombia.

2.2 BASES TEÓRICAS

2.2.1 Bases Teóricas Sobre el Cemento

Se define como cemento al material pulverizado que por adición de una cantidad conveniente de agua forma una pasta aglomerante capaz de endurecer, tanto bajo el agua como en el aire, quedan excluidas cales hidráulicas, cales aéreas y los yesos. Norma ITINTEC 334.001. (Reglamento Nacional de Edificaciones, 2016, p. 320868).

El cemento es el material aglomerante más importante de los empleados en la construcción. Se presenta en estado de polvo, obtenido por cocción a 1550° C una mezcla de piedra caliza y arcilla, con un porcentaje superior al 22% en contenido de arcilla. Estas piedras antes de ser trituradas y molidas, se calcinan en hornos especiales, hasta un principio de fusión o vitrificación. La piedra caliza en una proporción del 75% en

peso, triturada y desecada junto a la arcilla en una proporción del 25% se muele y mezcla homogéneamente en molinos giratorios de bolas.

El polvo así obtenido es almacenado en silos a la espera de ser introducidos en un horno cilíndrico con el eje ligeramente inclinado, calentado a 1600° C por ignición de carbón pulverizado, donde la mezcla caliza – arcilla, sufre sucesivamente un proceso de deshidratación, otro de calcinación y por último de vitrificación. El producto vitrificado es conducido, a la salida del horno a un molino-refrigerador en el que se obtiene un producto sólido y pétreo conocido con el nombre de clinker, que junto a una pequeña proporción o pequeña cantidad de yeso blanco o escayola es reducido a un polvo muy fino, homogéneo y de tacto muy suave, como es el cemento, que es almacenado en silos para su posterior envase y transporte.

Rivva (2000), señala que "el cemento es el material más activo del concreto y, generalmente, tiene el mayor costo unitario, por ello, y considerando que las propiedades del concreto dependen tanto de la cantidad como de la calidad de sus componentes, la selección y uso adecuado del cemento son fundamentales para obtener en forma económica las propiedades deseadas par una mezcla dada".

En el mercado peruano existe variedad de cementos para ser empleados por el usuario y la mayoría de ellos proporcionan adecuados niveles de resistencia y durabilidad en las obras usuales. Algunos de los cementos disponibles proporcionan niveles más altos para determinadas propiedades que aquellos exigidos por las especificaciones de la obra, por lo que siempre deben indicarse en éstas los requisitos exigidos para el cemento.

"La importancia de elaborar especificaciones adecuadas es obvia, ya que ellas deben garantizar que solo se ha de emplear la cantidad y tipo de cemento adecuados para alcanzar los requisitos que se desea obtener en el concreto". (p. 28)

La totalidad de los cementos empleados en el Perú son cementos portland que cumplen con los requisitos que especifica la Norma ASTM C 150; o cementos combinados que cumplen con lo indicado en la Norma ASTM C 595. (**Rivva, p. 31**)

En la presente investigación los cementos utilizados son: Cemento Sol Portland Tipo-I. Cemento Yura Tipo HE-Alta Resistencia Inicial y Cemento Portland Puzolánico Yura IP-Alta Durabilidad,

2.2.2 Bases Teóricas Sobre la Resistencia del Concreto

Es la mezcla constituida por cemento, agregado, agua y eventualmente aditivos en proporciones adecuadas para obtener las proporciones prefijadas; el material que en nuestro medio es conocido como concreto, es definido como Hormigón en las Normas del Comité Panamericano de Normas Técnicas (COPANT), adoptadas por el ITINTEC. (**Reglamento Nacional de Edificaciones, 2006, p. 320869**).

El concreto es un producto artificial compuesto que consiste de un medio ligante denominado pasta, dentro del cual se encuentran embebidas partículas de un medio ligado denominado agregado. La pasta es el resultado de la combinación química del material cementante con el agua. Es la fase continua del concreto dado que siempre está unida con algo de ella misma a través de todo conjunto de éste. (Rivva, 2000, p. 8)

El agregado es la fase discontinua del concreto dado que sus diversas partículas ni se encuentran unidas o en contacto unas con otras, sino que se encuentran separadas por espesores diferentes de pasta endurecida.

Las propiedades del concreto están determinadas fundamentalmente por las características físicas y químicas de sus materiales componentes, pudiendo ser mejor comprendidas si se analiza la naturaleza del concreto.

Actualmente el concreto es el material de construcción de mayor uso en nuestro país. Si bien la calidad final del concreto depende en forma muy importante del conocimiento del material y de la calidad profesional del ingeniero, el concreto es, en general desconocido en muchos de sus siete grandes aspectos: naturaleza, materiales, propiedades, selección de las proporciones, proceso de puesta en obra, control de calidad e inspección y mantenimiento de los elementos estructurales.

Resistencia del Concreto. A lo largo de la historia, los constructores siempre han buscado perfeccionar los procesos de construcción y utilizar

materiales de alta resistencia, siendo el concreto uno de los más preferidos.

Como sabemos, el concreto hoy cumple un papel importante en la estructura de casi todas las obras. Justamente, porque una de sus principales propiedades es su alta capacidad para soportar diversas cargas de compresión.

Cuando se habla de la resistencia del concreto, generalmente se hace referencia a la resistencia a compresión del concreto endurecido, la etapa de endurecimiento inicia con el fraguado final del concreto y prosigue en el tiempo dependiendo totalmente de las condiciones de curado del material.

Según Reglamento Nacional de Edificaciones; La resistencia especificada a la compresión del concreto (f c), es la resistencia a la compresión empleada en el diseño y evaluada de acuerdo con las consideraciones del Capítulo 5 expresada en MPa. (Reglamento Nacional de Edificaciones, 2009. p.432)

La resistencia a la compresión que requiere un determinado tipo de concreto la podemos encontrar en los planos estructurales con el símbolo: f´c, acompañado de un número que el ingeniero estructural siempre coloca (ejemplo: f´c = 210 kg/cm2), y que señala la resistencia que debe alcanzar el concreto a los 28 días de su elaboración en obra.

Son varios los factores (forma de preparación, cantidad de materiales utilizados, calidad de los agregados, etc.) que afectan positiva o

negativamente esta importante propiedad del concreto. Por eso debemos realizar una verificación para estar completamente seguros de su calidad. Todos los profesionales de la construcción (grande, mediano o pequeño) deben tener presente esta recomendación. (Aceros Arequipa S.A., 2011)

Norma de Verificación

Precisamente, la Norma E-060: Concreto Armado, en el Capítulo 3, Requisitos de Construcción, Artículo 4.- Requisitos de Construcción, 4.1.- Consideraciones Generales, 4.1.2 y 4.1.5, nos recomienda, aplicar en todas nuestras obras, lo siguiente:

"La verificación del cumplimiento de los requisitos para f´c, se basará en los resultados de probetas de concreto preparadas y ensayadas de acuerdo a las Normas. Se considera como un ensayo de resistencia, al promedio de los resultados de dos probetas cilíndricas preparadas de la misma muestra de concreto y ensayadas a los 28 días de moldeadas las probetas". **Reglamento Nacional de Edificaciones, 2006, p. 320873).**

Esto quiere decir que la verificación de la resistencia a la compresión del concreto se realiza mediante ensayos de probetas en laboratorios de estructuras, las probetas son elaboradas previamente en obra de acuerdo a simples procedimientos normalizados.

La resistencia a la compresión simple es la característica mecánica principal del concreto. Se define como la capacidad para soportar una carga por unidad de área, y se expresa en términos de esfuerzo, generalmente en kg/cm2, MPa y con alguna frecuencia en libras por pulgada cuadrada (psi).

El ensayo universalmente conocido para determinar la resistencia a la compresión, es el ensayo sobre probetas cilíndricas elaboradas en moldes especiales que tienen 150 mm de diámetro y 300 mm de altura. La confección de las probetas y el ensayo están regulados por las Normas (ASTM). (OTTAZZI, 2004. P.12).

2.3 DEFINICIONES A USAR EN EL ESTUDIO

A continuación se definen las distintas herramientas estadísticas comunes que se utilizaron para el control de calidad de materiales elaborados de manera conjunta.

Según el manual de supervisor de obras de concreto los métodos estadísticos de calidad se fundamentan en las leyes de probabilidad, por tanto "hay que permitir que estas leyes funcionen, el requisito más importante para su funcionamiento apropiado consiste en la selección de los datos representativos mediante un muestreo aleatorio"; estas herramientas a utilizar son de gran importancia para tener el grado de confianza necesario.

2.3.1 Definiciones de Conceptos Estadísticos

Es necesario definir los distintos elementos estadísticos por lo tanto comenzaremos por la nomenclatura que son componentes de las fórmulas estadísticas que se emplearan:

n = Número de ensayos X de la muestra

Número total de resultados de los ensayos X o de los valores en consideración.

X =Resultados individual del ensayo

Resultados de ensayos separados (se pueden denominar X_1, X_2, X_3 ... etc., para indicar los resultados de ensayos específicos).

2.3.1.1 Media Aritmética

Es el promedio aritmético de todos los resultados de los ensayos realizados. Para obtener dicho resultado, se suman todos los datos de los resultados de los ensayos y se divide por el total de datos obtenidos n.

$$X_p = \frac{X_1 + X_2 + X_3 + \dots + X_n}{n}$$

2.3.1.2 Desviación Estándar

Es el parámetro o medida que indica que tan dispersos están los resultados de la media aritmética obtenida. Y se simboliza con la letra S. La desviación estándar de la muestra es la raíz cuadrada del promedio obtenido al dividir la suma de los cuadrados de las diferencias numéricas del resultado de cada prueba y el promedio de la muestra entre el número de las muestras menos uno. De este concepto podemos expresar

también que es el parámetro más cercano para poder estimar la dispersión de datos y resultados.

$$S = \sqrt{\frac{(X_1 - X_p)^2 + (X_2 - X_p)^2 + \cdots (X_n - X_p)^2}{n - 1}}$$

2.3.1.3 Coeficiente de Variación

Esta fórmula expresa la desviación estándar como el porcentaje promedio, representada por la letra V= Coeficiente de variación, también conocida como coeficiente de variación existente entre la desviación estándar y la media, esta media indica que entre mayor porcentaje de variación es mayor la dispersión.

$$V = \frac{100 * S}{X_P}$$

Diferencia numérica entre el valor más grande observado (resultado más alto de la prueba) y el valor observado más pequeño (resultado más bajo de la prueba), donde R= Rango de la muestra.

2.3.1.4 Cartas de Control

La carta de control es un método gráfico, que se elabora una vez obtenido un valor promedio y un conjunto de valores ó resultados de pruebas que se tomaran a través del tiempo. Son sencillas de elaborar, en ellas se plasma la información que se obtiene de los resultados de pruebas durante el proceso de elaboración del concreto.

2.3.2 Análisis Estadístico sobre Comercialización de Cementos en el Perú y el Departamento de Tacna

La industria del sector cementero se encuentra conformada por cuatro grupos empresariales distribuidos en siete empresas productoras de cemento, siendo el grupo más importante, Cementos Lima y Cemento Andino, quienes cuentan con la mayor participación del mercado.

TABLA N° 3 PARTICIPACION DE GRUPOS ECONOMICOS SECTOR CEMENTERO EN EL PAÍS

EMPRESAS	PROPIEDAD	MERCADO	PARTICIPACIÓN
			DESPACHO A
			JULIO 2014
Cementos Lima y	Familia Rizo	Centro del País	57%
Cemento Andino	Patrón		
Cemento Yura y	Grupo Rodriguez	Sur del País	19%
Cementos Sur	Banda		
Cementos	Grupo Hochschild	Norte del País	23%
Pacasmayo y			
Cemento Selva			
Cementos Inca	Familia Choy	Centro del País	1%

Fuente: Reporte Financiero Bunkenroad Perú- Cementos Andino S.A, Datos del INEI, Julio 2015

Cabe destacar que estas empresas solo compiten en las zonas límites de su radio de acción debido a su distribución geográfica. Con respecto al poder de negociación frente a sus clientes, las empresas de este sector muestran un elevado nivel de negociación debido a que sus plantas se encuentran distantes entre sí, ocasionando una ventaja competitiva a sus clientes.

Con respecto a la competencia entre empresas del mismo sector no existe alta rivalidad entre ellas debido a que cada una opera en un mercado dentro del país.

Análisis de los Competidores

Cemento Andino S.A. se encuentra dentro del mercado de cementos del Perú, que está constituido por cuatro grupos económicos que a la vez se distribuyen en siete empresas productoras de cemento a nivel nacional, atendiendo a las tres regiones del país.

Cemento Lima, Perteneciente al grupo económico de la familia Rizo Patrón, basa su desarrollo de las operaciones en dos lineamientos estratégicos principales: El primer objetivo estratégico está relacionado con la expansión de sus operaciones, tanto dentro, como fuera del mercado nacional, el segundo objetivo se refiere al control y reducción de costos, dirigidos a mejorar la eficiencia productiva y a mantener el menor costo de combustible posible.

Productos:

- ✓ Portland Tipo 1 Marca Sol
- ✓ Portland Tipo IP; Marca "Supercemento Atlas"

Cemento Pacasmayo, empresa constituida en 1949, perteneciente al Grupo Hochschild, cubre la demanda de las regiones del norte del país, para lo cual cuenta con su planta de producción en la provincia de Pacasmayo (La Libertad), teniendo significativa presencia en los mercados de Tumbes, Piura, Lambayeque, La Libertad, Cajamarca, Ancash. Asimismo, mediante su subsidiaria Cementos Selva cubre los requerimientos en la zona Nor- Oriental del país.

Productos:

- ✓ Cemento Portland Tipo I
- ✓ Cemento Portland Tipo II
- ✓ Cemento Portland Tipo V
- ✓ Cemento Portland Puzolánico Tipo IP
- ✓ Cemento Portland Compuesto tipo 1 Co.

Cementos Yura, empresa del Grupo Gloria desde 1996. Inicia operaciones en 1962 como Cementos Yura S.A y cuenta con una planta ubicada en la ciudad de Arequipa.

Cementos Sur, Empresa del Grupo Gloria desde 1996. Inicia operaciones en 1962 como Cementos Yura S.A y cuenta con una planta ubicada en la ciudad de Arequipa.

Productos:

- ✓ Cemento Portland Tipo I
- ✓ Cemento Portland Tipo IP
- ✓ Cemento Portland Tipo IPM
- ✓ Cemento HE Alta Resistencia

TABLA N° 4 VENTA LOCAL DE CEMENTO POR EMPRESA, SEGÚN DEPARTAMENTO 2011-2015 (TONELADAS)

DEPARTAMENTO	TOTAL	UNION ANDINA DE CEMENTOS	CEMENTOS PACASMAYO	YURA	CEMENTOS SELVA	CALIZA CEMENTO INCA	OTROS
2015	11 032 287	5 634 703	2 015 145	2 285 915	286 286	386 418	423 819
AMAZONAS	50 659	158	21 655	-	28 402	4	-
ANCASH	411 219	186 348	218 312	-	-	3 027	3 532
APURIMAC	257 212	74 571	-	181 983	-	629	30
AREQUIPA	788 261	260	-	786.650	-	-	1 351
AYACUCHO	309 527	295 125	-	13 787	-	-	614
CAJAMARCA	258 696	2 688	204 610	-	27 945	9 110	14 343
CUSCO	499 836	1 018	-	497 909	-	-	908
HUANCAVELICA	167 393	167 393					
HUANUCO	263 518	254 829	-	-	-	7 955	734
ICA	500 708	397 147	-	34 562	-	64 877	4 122
JUNIN	582 029	567 630	-	-	-	2 196	12 203
LA LIBERTAD	691 173	1 394	637 757	-	-	49 984	2 037
LAMBAYEQUE	493 267	594	475 920	-	-	15 777	971
LIMA	3 950 379	3 368 625	-	-	-	215 442	366 312
LORETO	133 857	81 599	-	-	43 115	8 335	808
MADRE DE DIOS	45 919	-	-	45 919	-	-	-
MOQUEGUA	92 184	17	-	92 167	-	-	-
PASCO	118 538	-	-	-	-	74	2 639
PIURA	408 988	1 141	399 631	-	-	7 902	314
PUNO	496 429	-	-	496 429	-	-	-
SAN MARTIN	204 591	13 434	-	-	186 384	-	4 773
TACNA	143 722	7 212	-	136 510	-	-	-
TUMBES	57 429	170	57 259	-	-	-	-
UCAYALI	106 756	97 523	-	-	-	10 105	8 128

NOTA 1: La Empresa Unión Andina de Cementos S.AA. se origina de la fusión de Cemento Lima S.A.A. y Cementos Andino S.A.

FUENTE: Empresa Productores de Cemento y Asociación de Productores de cemento.

NOTA 2: Se aprecia que los cementos Yura son los de mayor comercialización en la ciudad de Tacna en los tipos 1P y HE, seguidos de Unión Andina de Cementos en su tipo Sol Tipo 1

2.4 CARACTERISTICAS DE LOS MATERIALES

2.4.1 El Cemento

El cemento es el componente o material aglomerante de mayor importancia y activo en la mezcla de concreto, el cual cuando es mezclada con agua ya sea solo o con otros materiales tales como arena y piedra tiene la propiedad de formar una pasta blanda que se endurece.

Esencialmente es el Clinker finamente molido, producido por la acción a elevadas temperaturas entre (1400-1450° C), de mezcla que contiene cal, alúmica, fierro y sílice en proporciones determinadas.

En la presenta investigación los cementos que han sido utilizados son: Cemento Sol Portland Tipo- I, Cemento Yura Tipo HE-Alta Resistencia Inicial y Cemento Portland Puzolánico Yura IP-Alta Durabilidad.

2.4.1.1 Cemento Sol Portland Tipo-I

Cumple con la Norma Técnica Peruana (NTP) 334.009 y la Norma Técnica Americana ASTM C-150.

Producto obtenido de la molienda conjunta de clinker y yeso.

Cuenta con la fecha y hora de envasado impresa en la bolsa en beneficio de los consumidores, ya que permite una mayor precisión en la trabajabilidad.

Es usado en concretos de muchas aplicaciones y preferido por el buen desarrollo de resistencias a la comprensión a temprana edad.

Desarrolla un adecuado tiempo de fraguado;

El acelerado desarrollo de resistencias iniciales permite un menor tiempo en el desencofrado.

Dentro de sus usos y aplicaciones es utilizado en las construcciones en general y de gran envergadura cuando no se requieren características especiales o no especifique otro tipo de cemento. Utilizado ampliamente para fabricar concretos de mediana y alta resistencia a la compresión (superiores a 300 Kg/cm2)

Para la preparación de concretos para cimientos, sobreciminentos, zapatas vigas columnas y techado.

La presentación está dada por bolsas de 42.5 kg (4 pliegos – 3de papel +1 film plástico) y a granel (a despacharse en camiones bombonas y en Big Bags). (Ficha Técnica Unacem).

2.4.1.2 Cemento Yura Tipo HE-Alta Resistencia Inicial

Cemento Yura Tipo HE-Alta Resistencia Inicial, es un cemento portland de última generación, elaborado bajo los más altos estándares de la industria cementera colaborando con el cuidado

del medio ambiente, debido a que en su producción se genera menor cantidad de CO2, contribuyendo a una reducción de los gases con efecto invernadero.

Es un producto fabricado a base de Clinker de alta calidad, puzolana natural de origen volcánico de alta reactividad y yeso. Esta mezcla es molida industrialmente hasta lograr un alto grado finura. La fabricación es controlada bajo un sistema de gestión de calidad certificado ISO 9001 y de gestión ambiental ISO 14001, asegurando un alto estándar de calidad.

La composición de este producto permite la producción de concretos con requerimientos de alta resistencia inicial, otorgando propiedades adicionales para lograr alta durabilidad por lo que se puede ser utilizado en obras de infraestructura y construcción en general.

TABLA N° 5 CARACTERÍSTICAS TÉCNICAS DEL CEMENTO YURA TIPO HE-ALTA RESISTENCIA INICIAL

REQUISITOS FÍSICOS	REQUISITOS NORMA TECNICA NTP 334.082 ASTM C1157	DESEMPEÑO DEL CEMENTO YURA ALTA RESISTENCIA INICIAL- TIPO HE
- Superficie específica Blaine (cm2/g).	-	4400
 Expansión en autoclave (%). 	0.80 Máximo	0.00
 Fraguado Vitcat Inicial (minutos). 	45 Mínimo	170
 Fraguado Vitcat Final (minutos). 	420 Máximo	210
- Contenido de aire mortero.	-	4.50

Fuente: Ficha Técnica Cementos Yura S.A

2.4.1.3 Cemento Portland Puzolánico Yura IP- Alta Durabilidad

El cemento Portland Puzolánico Yura IP, Alta Durabilidad, es un cemento elaborado bajo los más estrictos estándares de la industria cementera colaborando con el medio ambiente, debido a que en su producción se reduce ostensiblemente la emisión de CO2, contribuyendo a la reducción de los gases de efecto invernadero.

Es un producto fabricado a base de clinker de alta calidad, puzolana natural de origen volcánico de alta reactividad y yeso.

Esta mezcla es molida industrialmente en molinos de última generación, logrando un alto grado de finura; la fabricación es controlada bajo un sistema de gestión de calidad certificado con ISO 9001, y gestión ambiental ISO14001, asegurando un alto estándar de calidad.

Sus componentes y la tecnología utilizada en su fabricación, hacen que tenga propiedades especiales que otorgan los concretos y morteros cualidades únicas de alta durabilidad, permitiendo que el concreto mejore su resistencia y permeabilidad y también pueda resistir la acción del intemperismo, ataques químicos, abrasión u otros tipos de deterioro.

TABLA N° 6 CARÁCTERÍSTICAS TÉCNICAS DEL CEMENTO PORTLAND PUZOLÁNICO YURA IP-ALTA DURABILIDAD

REQUISITOS QUÍMICOS	CEMENTO PORTLAND PUZOLÁNICO YURA TIPO IP	Requisitos Norma NTP 334.090 ASTM C-595
MgO (%)	1.99	6.00 Max.
SO ₃ (%)	1.75	4.00 Max.
Perdida por Ignición (%)	2.14	5.00 Max.

REQUISITOS FÍSICOS	CEMENTO PORTLAND PUZOLÁNICO YURA TIPO IP	Norma NTP 334.090 ASTM C-595
Peso específico (gr/cm3)	2.85	-
Expansión en autoclave (%)	0	0.80 Máx.
Fraguado Vitcat Inicial (minutos)	170	45 min
Fraguado Vitcat Final (minutos)	270	420 Max.

Fuente: Ficha Técnica Cementos Yura S.A

TABLA N° 7 RESUMEN DE LOS REQUISITOS QUÍMICOS DE LOS DIFERENTES TIPOS DE CEMENTO

Requisitos químicos	CEMENTO SOL (TIPO I)	CEMENTO YURA IP (TIPO II)	CEMENTO YURA HE (TIPO III)	NTP 334.090	NTP 334.009
C ₃ S	52.49	46.45	60.00	-	-
C ₂ S	16.82	29.32	12.43	-	-
C ₃ A	11.46	6.72	13.23	-	-
<i>SO</i> ₃	2.78	1.75	-	4.00 max	1
MgO	3.37	1.99	2.63	6.00 max	6.00 max
Perdida por Ignición	1.01	1.00	1.90	5.00 max	3.00 max

TABLA N° 8
RESUMEN DE LOS REQUISITOS FÍSICOS DE LOS DIFERENTES TIPOS
DE CEMENTO

Requisitos Físicos	CEMENTO SOL (TIPO I)	CEMENTO YURA IP (TIPO II)	CEMENTO YURA HE (TIPO III)	NTP 334.090	NTP 334.009
Peso Específico (gr/cm3)	3150	2850	2980	-	-
Expansión en autoclave (%)	0.17	0.07	0.00	0.80 máx.	0.80 máx.
Fraguado Vicat Inicial (min)	116	170	170	45 min	45 min
Fraguado Vicat Final (min)	278	270	210	420 máx.	375 máx.
Contenido de aire (%)	8.30	6.73	4.50	-	-

TABLA N° 9 RESUMEN DE LA RESISTENCIA A LA COMPRESION A LOS 1 ,3 ,7 y 28 DÍAS SEGÚN LAS NORMAS TECNICAS DE LOS DIFERENTES TIPOS DE CEMENTO

Resistencia a la Compresión	NTP 334.090 (ASTM C595)	NTP 334.009 (ASTM C150)
1 días	-	-
3 días	133 kgf-cm2	122 kgf-cm2
7 días	204 kgf-cm2	194 kgf-cm2
28 días	255 kgf-cm2	-

2.4.2 El Agua

El agua de mezcla es el elemento fundamental en la preparación del concreto, cumple dos funciones muy importantes, permitir la hidratación del cemento y hacer la mezcla manejable.

El agua presente en la mezcla de concreto reacciona químicamente con el material cementante para lograr la formación del gel.

Se podrá emplear como aguas de mezclado aquellas que se consideren potables, o las que por experiencia se conozcan que puedan ser utilizadas en la preparación del concreto.

Debe recordarse, no todas las aguas inadecuadas para beber son inconvenientes para preparar concreto. En general, dentro de las limitaciones, el agua de mezclado deberá estar libre de sustancias colorantes, aceites y azúcares. El agua empleada no deberá contener sustancias que puedan producir efectos sobre el fraguado, la resistencia o durabilidad, apariencia del concreto, o sobre los elementos metálicos embebidos en éste.

El agua empleada en la preparación del concreto deberá cumplir con los requisitos de la Norma NTP 339.088 y ser, de preferencia potable. El agua debe estar dentro de los siguientes límites:

TABLA N° 10 REQUISITOS PERMISIBLES DEL AGUA DE MEZCLA UTILIZADA EN LA PRODUCCIÓN DE CONCRETO

DESCRIPCIÓN	LIMITE PERMISIBLE
Sólidos en suspensión	5,000 ppm Máximo
Materia orgánica	3 ppm Máximo
Alcalinidad (NaCHCO3)	1,000 ppm Máximo
Sulfatos (Ion SO4)	600 ppm Máximo
Cloruros (Ión CI)	1000 ppm Máximo
РН	5 a 8 ppm Máximo

- El contenido máximo de materia orgánica, expresada en oxígeno consumido será de 3ppm.
- El contenido de residuo sólido no será mayor de 5000ppm.
- El pH estará comprendido entre 5.5 y 8.
- El contenido de sulfatos, expresado en ion S04 será menor de 600ppm.
- El contenido de cloruros, expresado en ion C1, será menor de 1000ppm
- El contenido de Carbonatos y Bicarbonatos alcalinos (alcalinidad total) será mayor de 1000ppm

En nuestro caso el agua empleada para la elaboración de los especímenes estuvo referida al agua potable del laboratorio de Mecánica de Suelos y Materiales de la Facultad de Ingeniería Civil de la Universidad Privada de Tacna

2.4.3 Los Agregados

Los agregados para concreto deben estar formados de partículas duras y compactas (peso específico elevado) de textura y forma adecuada con una buena distribución de tamaños (buena granulometría). Los agregados suelen estar contaminados con limo, arcilla, humus y otras materias orgánicas.

Algunos tienen porcentajes altos de material liviano o de partículas de forma alargada o plana, tales sustancias o partículas defectuosas restan calidad y resistencia al concreto y las especificaciones fijan los límites permisibles de tolerancia. Se acepta como norma de calidad las especificaciones ASTM C-33, la cual se describe de forma general a continuación.

La norma ASTM C-33 define los requerimientos necesarios de graduación y calidad de los agregados fino y grueso que serán usados para concreto estructural, por lo que es considerada adecuada para asegurar materiales satisfactorios para la mayoría de concretos.

2.4.3.1 Agregado Fino

Los agregados finos consistirán en arena natural, arena manufacturada o combinación de ambas.

El agregado fino deberá estar graduado dentro de los límites que se muestran:

TABLA N° 11 LIMITES DE GRADUACIÓN DEL AGREGADO FINO

TAMIZ	PORCENTAJE QUE PASA
3/8" (9.5 mm)	100
Nro. 4 (4.75 mm)	95 a 100
Nro. 8 (2.36 mm)	80 a 100
Nro. 16 (1.18 mm)	50 a 85
Nro. 30 (600 mm)	25 a 60
Nro. 50 (300 μm)	10 a 30
Nro.100 (150 μm)	2 a 10

Fuente: NTP ASTMC C-33

La cantidad de sustancias deletéreas en el agregado fino no excederá los límites presentados en la siguiente tabla.

TABLA N° 12 LIMITES DE SUSTANCIAS PERJUDICIALES EN AGREADO FINO

Sustancia	Porcentaje máximo en peso del total de la muestra
Arcilla y partículas disgregables	3.0
Material más fino que el tamiz 200 (75 μm):	
concreto sujeto a abrasión	3.0 ^A
cualquier otro concreto	5.0 ^A
Carbón y lignito:	
cuando la apariencia del concreto es de	0.5
importancia	0.5
cualquier otro concreto	1.0

Fuente: ASTMC C-33

2.4.3.2 Agregado Grueso

El agregado grueso consiste en grava, grava triturada, roca triturada, escoria de hornos de explosión concreto de cemento hidráulico triturado o una combinación de lo anterior, de acuerdo con los requerimientos que establece la Norma C-33.

Los agregados gruesos deben satisfacer los requerimientos especificados en la Norma C-33 para cada número de tamiz según el tamaño de agregado a utilizar.

El tamaño de agregado se encuentra en función de las necesidades específicas para el diseño del concreto.

Los agregados gruesos para fabricación de concreto deben estar libres de cantidades excesivas como arcilla, carbón y lignito, cenizas y material fino.

Los límites permisibles se encuentran establecidos en la norma, y están en función de uso que se le dará al concreto.

El agregado grueso para uso en concreto que estará expuesto con frecuencia al agua, debe estar libre de material que reaccione peligrosamente con los álcalis del cemento.

Si tales materiales se presentan en cantidades peligrosas, el agregado grueso será rechazado o será empleado con cemento que contenga menos de 0.6% de álcalis calculados en base de óxido de sodio, o con la adición de material que demuestre

controlar las expansiones debidas a la reacción de álcaliagregado.

Las partículas de agregado alargadas y chatas tienen efecto negativo sobre la trabajabilidad y obligan a diseñar mezclas más ricas en agregado fino y por consiguiente a emplear mayores cantidades de cemento y agua. Se considera que dentro de este caso están los agregados de perfil angular, los cuales tienen un alto contenido de vacíos y por tanto requieren un porcentaje de mortero mayor que el agregado redondeado. El perfil de las partículas, por sí mismo, no es un indicador de que un agregado está sobre o bajo el promedio en su capacidad de producir resistencia. (Álvarez, 2013, p.5)

Para la elaboración de los especímenes de concretos se emplearon los agregados de la cantera Cono Sur (piedra chancada, piedra redondeada y arena gruesa). Y de esta forma obtener las curvas de desarrollo de resistencia a la compresión versus tiempo.

A. Clasificación de las piedras.

Por su Obtención:

- Piedra Grande o Base.- Son las de mayor tamaño encontradas mayormente en canteras de cielo libre
- Piedra Mediana.- Al igual que las piedras grandes, estas también se encuentran en canteras al aire libre

- Piedra Chancada.- Obtenido de la trituración artificial de la piedra grande, suele remplazar a la grava
- Confitillo.- Es lo que sobra del proceso de trituración de la piedra chancada

Por su Forma:

- Angulares.- Son mayormente las chancadas en máquinas, posee ángulos muy vivos y afilados, son más adherentes al concreto
- Sub Angular.- Sus caras poseen evidencias de estar ligeramente pulidas
- Sub Redondeada.- Se encuentran casi redondeadas y poseen ángulos pulidos
- Redondeada.- Se encuentran en mayor cantidad en los ríos sin aquellas que han perdido todos sus ángulos vivos, siendo menos adherentes.

Por su Tamaño:

- Piedra Grande.- Sus tamaños van desde la 10" hasta tamaños un poco mayores
- Piedra Mediana.- Estas se encuentran entre los 4" y 6"
- Piedra Chancada.- Se logra en los tamaños comerciales de las gravillas, por ser procesadas

 Confitillo.- Son obtenidos en tamaños de 1.5 cm y 2.5 cm.

2.4.3.3 Granulometría de los Agregados

Si tenemos en consideración que las distintas partículas de los agregados tienen formas geométricas irregulares, es obvio que no es fácil establecer un criterio general numérico individual para poder definir el tamaño que presenta cada partícula midiendo sus dimensiones.

Como no se puede realizar el proceso de medición del volumen de los distintos tamaños de partículas de agregado, se usa una manera indirecta de realizarlo, el cual consiste en tamizar por una serie de mallas de aberturas conocidas y establecidas, pesar los materiales retenidos en dichos tamices refiriéndonos en porcentajes del total de la muestra seca.

Los valores que se obtienen se representan gráficamente en un sistema coordenado semi-logarítmico que permite apreciar la distribución acumulada.

La serie de tamices estándar ASTM para concreto tienen la particularidad de que empieza por el tamiz de abertura cuadrada 3" y el siguiente tiene una abertura igual a la mitad del anterior. A partir de la malla 3/8" se mantiene la misma secuencia, pero el nombre de las mallas se establece en función del número de aberturas por pulgadas cuadradas. (**Norma ASTM C136**).

El tamaño máximo de agregado que se utiliza en el concreto es elegido muchas veces basándose en la economía.

Comúnmente se necesita más agua y cemento para agregados de tamaño pequeño que para los de mayores tamaños.

Se define operativamente como tamaño máximo nominal, el que corresponde al menor tamiz que produce el primer retenido.

2.4.3.4 Módulo de Fineza de los Agregados

Es la caracterización numérica que pueda representar la distribución volumétrica de las partículas de agregados.

Es un concepto sumamente importante establecido por Duff Abrams en el año de 1925, y se define como la suma de los porcentajes retenidos acumulativos de la serie estándar hasta el tamiz N°100 y esta cantidad se divide entre 100. El sustento matemático del módulo de fineza reside en qué es proporcional al promedio logarítmico del tamaño de partículas de una cierta distribución granulométrica.

La base experimental que apoya el concepto de Módulo de fineza es que, granulometrías que tengan igual M.F independientemente de la gradación individual, requieren la misma cantidad de agua para producir mezclas de concreto de similar plasticidad y resistencia lo que convierte en un parámetro ideal para el diseño y control de mezclas. (NTP 400.010)

La clasificación de la arena por su módulo de fineza se muestra a continuación:

TABLA N° 13 CLASIFICACIÓN DE LA ARENA POR MÓDULO DE FINURA

TIPO DE ARENA	MÓDULO DE FINURA
Gruesa	2.9 -3.2 gramos
Media	2.2 – 2.9 gramos
Fina	1.5 – 2.2 gramos
Muy fina	1.5 gramos

Fuente: ASTM C-33

2.4.3.5 Peso Específico de los Agregados

Se define como gravedad específica de un agregado, la relación de su peso respecto al peso en volumen absoluto igual de agua (agua desplazada por inmersión).

El peso específico es el coeficiente de dividir el peso de las partículas entre el volumen de las mismas sin considerar los vacíos entre ellas.

Este método de ensayo cubre la determinación de la densidad promedio de una determinada cantidad de partículas de agregado. Las Normas ASTM C-127 y C-128 establecen el procedimiento estandarizado para su determinación en laboratorio distinguiéndose tres maneras de expresarlo en función de las condiciones de saturación.

Está dado por las siguientes formulas:

Da: Densidad del agua

W Vp VS

Vs: Volumen de los sólidos en las partículas

Vp: Volumen de poros en las partículas

Vv: Volumen de vacíos entre partículas

Vag: Volumen de agregados

A: Peso de los solidos

B: Peso en el aire saturado superficialmente

C: Peso saturado superficialmente seco sumergido en agua

• Peso Específico de Masa Seca (Bulk Specific Gravity)

$$Gb = \frac{A}{B - C} = \frac{A}{VagxDa}$$

Peso Específico Saturado Superficialmente Seco (S.S.S. Specific Gravity)

$$Gb = \frac{B}{B-C} = \frac{B}{VaaxDa}$$

• Peso Específico Aparente (Apparent Specific Gravity)

$$Gb = \frac{A}{A - C} = \frac{B}{VagxDa}$$

Para casos de diseño usaremos la ecuación dada denominada (S.S.S. Specific Gravity).

2.4.4 El Aire

El aire atrapado o natural, que varía usualmente entre 1% a 3% del volumen de la mezcla, están en función a las características de los materiales que intervienen en la mezcla, generalmente en los agregados en donde el tamaño máximo y la granulometría son fuente de su variabilidad, dependen también del proceso de construcción aplicado durante su colocación y compactación.

También puede contener intencionalmente aire incluido, mayormente entre el 3% a 7% del volumen de la mezcla, con el empleo de aditivos.

La presencia de aire en las mezclas tiende a reducir la resistencia del concreto por incremento en la porosidad del mismo. (Álvarez, 2013, p.6)

2.5 PARAMETROS BASICOS EN EL COMPORTAMIENTO DEL CONCRETO

2.5.1 Trabajabilidad

Este término es la propiedad que tiene el concreto fresco para su facilidad en el mezclado, transporte, colocación y consolidación en tal grado que resista a la segregación. El concreto debe ser trabajable pero los componentes de estos no deben separarse. El grado apropiado de trabajabilidad para una estructura, dependen del tamaño y forma del elemento en que se vaya a utilizar, de la disposición y tamaño del refuerzo y de los métodos de colocación y compactación.

Dentro de los distintos factores de mayor importancia que influyen en el momento de trabajar con el concreto son los siguientes: la gradación la forma y la textura de la particulas, así como el equilibrio adecuado entre gruesos y finos, la cantidad de cemento, el aire incluido, los aditivos y la consistencia de dicha mezcla.

Claramente un concreto adecuadamente diseñado debe permitir ser colocado y compactado apropiadamente con el equipo disponible.

La cantidad de agua requerida por trabajabilidad dependerá principalmente de las características de los agregados en lugar de las características del cemento.

Cuando la trabajabilidad requiere ser mejorada, el rediseño de la mezcla debe consistir en incrementar la cantidad de mortero en lugar de incrementar simplemente el agua y los finos (cemento).

El método tradicional de medir la trabajabilidad ha sido desde hace muchos años el "Slump" o asentamiento con el cono de Abrams, ya que permite una aproximación numérica a esta propiedad del concreto.

El agua es mayor cuando los agregados son más angulares y de textura áspera, pero esa "desventaja" tiene mejoras en otras características como la adherencia con la pasta de cemento.

El asentamiento a emplearse en las dosificaciones es de 3" a 4" para los ambos métodos de diseño empleados (ACI- Comité 211 y WALKER).

2.5.2 Resistencia

En general las especificaciones del concreto requerirán una resistencia mínima a compresión (F´c).

Estas especificaciones también podrían imponer limitaciones en la máxima relación agua/cemento y el contenido mínimo de cemento.

Es importante asegurar que estos requisitos no sean mutuamente incompatibles.

La resistencia a la compresión del concreto es la medida más común de desempeño que emplean los ingenieros para diseñar edificios y otras estructuras, esto se mide fracturando especímenes cilíndricos de concreto con una máquina de ensayos a compresión.

La resistencia a la compresión de calcula a partir de la carga de ruptura dividida por el área de la sección que resiste a la carga y se reporta en unidades de libra-fuerza por pulgada cuadrada. (National Ready Mixed Concrete Association.2013. **Prueba de Resistencia a la Compresión del Concreto. Recuperado de:**

http://nrmca.org/aboutconcrete/cips/cip35es.pdf.

2.5.3 Durabilidad

La durabilidad del concreto es la habilidad de resistir la acción del intemperismo, el ataque químico, la abrasión, congelamiento, deshielo, ciclos repetidos de mojado y seco, calentamiento y enfriamiento, sustancias químicas, ambiente marino, o cualquier otro proceso o

condición de servicio de las estructuras, que produzca un deterioro del concreto.

Estas distintas consideraciones pueden establecer limitaciones adicionales en la relación de agua cemento, el contenido de cemento y adición podría requerir el uso de aditivos.

Para alcanzar una adecuada durabilidad se deben seguir algunas condiciones como son:

La elección de los materiales, el concreto difícilmente será durable, si sus materiales constituyentes (agua, agregados, cemento, aditivos y/o adiciones); no son los más adecuados o no cumplen con las especificaciones.

La resistencia de un concreto, no es por sí sola, una medida de durabilidad. Es importante diseñar la mezcla de forma adecuada, considerando las características de los materiales, así como las condiciones ambientales a las que estará sometida.

La fabricación y puesta en obra es importante, siguiendo algunas recomendaciones como el mezclado suficiente para obtener un material homogéneo, que el trasporte mantenga la homogeneidad y evite la segregación, la colocación correcta, la compactación adecuada, el curado que garantice la hidratación suficiente del cemento y el correcto endurecimiento del concreto.

Debemos recordar que incluso la mezcla perfecta no producirá un concreto apropiado si no se lleva un control de la calidad en obra.

CAPÍTULO III

ENSAYOS

3.1 ENSAYOS EN LABORATORIO PARA DETERMINAR LAS PROPIEDADES FISICAS DE LOS AGREGADOS

El agregado forma aproximadamente las tres cuartas partes del volumen del concreto, por lo que la calidad del agregado es de suma importancia y sus propiedades influyen en el desempeño del concreto como la estabilidad volumétrica, resistencia y durabilidad; por lo que resulta fundamental que el agregado sea el óptimo.

Para los ensayos referidos a contenido de humedad, granulometría del agregado y módulo de fineza, peso específico y absorción como los ensayos de peso unitario suelto y compactado han sido realizados considerando las Normas ASTM C-566 y NTP 185.2002 para contenido de humedad, ASTM C-136 y NTP 400.037 para granulometría del agregado y módulo de fineza, ASTM C-128-01 y NTP 400.021 para peso específico y absorción del agregado, ASTM C-29 y NTP 400.017 para peso unitario del agregado suelto y compactado.

El agregado utilizado fue el que se comercializa por los proveedores en el mercado local y que se encuentra almacenado en depósitos provenientes de las canteras ubicadas en el cono sur de la ciudad de Tacna, para el muestreo se tomó porciones aproximadamente iguales y mezcladas para luego tomar una muestra compuesta con la cual se trabajó.

3.1.1 Ensayo de Contenido de Humedad.

Es la cantidad de agua retenida por las partículas del agregado, viene a ser la diferencia entre el estado actual de humedad y el estado seco; el grado de humedad está directamente relacionado con la porosidad de las partículas, la porosidad está también relacionado con el tamaño de los poros, su permeabilidad y la cantidad o volumen total de los poros.

Para el caso, nuestro agregado se encontraba expuesto a la intemperie, por lo tanto a las acciones del aire y del agua, por este motivo contiene cierta cantidad de agua en sus partículas, considerando esto último como humedad en los agregados.

Procedimiento.

- 1° Se seleccionó una fracción representativa del material.
- 2º Se colocó la amuestra en un recipiente (tara) previamente pesado.
- 3° Se pesó la muestra en el recipiente (tara), luego se llevó el proceso de secado en un horno por un tiempo de 24 horas a 110°C aproximadamente.
- 4º Al cabo de 24 horas, se pesó el conjunto de muestras más recipiente, previamente se dejó enfriar.
- 5° Se tomó los datos de pesado y se procedió a realizar los cálculos.

Se presenta a continuación las fichas sobre los ensayos realizado para el contenido de humedad del agregado fino, agregado grueso redondeado y agregado grueso angular así como los resultados en las Tablas Nº 14, 15 y 16 respectivamente.

CONTENIDO DE HUMEDAD

ENSAYO: CONTENIDO DE HUMEDAD DEL AGREGADO FINO	
NORMA :ASTM C-566 O NTP 185.2002	

CANTERA : Cono Sur

UBICACIÓN: TacnaTIPO/COD. MUESTRA: Ch_001MUESTREO: Centro de AcopioAPLICACIÓN: Concreto

MUESTRA : M - 1, 2, 3

TABLA N° 14 CONTENIDO DE HUMEDAD DEL AGREADO FINO

CONTENIDO DE HUMEDAD							
MUESTRA	AGREGADO FINO						
		1	2	3			
Peso del Recipiente	gr.	99.8	124.4	89.0			
Peso del Recipiente + Muestra Humeda	gr.	607.6	631.9	590.7			
Peso del Recipiente + Muestra Seca	gr.	600.9	625.0	583.8			
Peso del Agua	gr.	6.7	6.9	6.9			
Peso de la Muestra Seca Neta	gr.	501.1	500.6	494.8			
Porcentaje de Humedad	%	1.34	1.38	1.39			
Promedio	%		1.37				

ENSAYO: CONTENIDO DE HUMEDAD DEL AGREGADO GRUESO REDONDEADO
NORMA: ASTM C-566 O NTP 185.2002

TESIS : Diferencia en la Resistencia de los Concretos por Efecto de los Tipos de Cemento Comercializados en la Ciudad de Tacna, 2016

CANTERA : Cono Sur

UBICACIÓN: TacnaTIPO/COD. MUESTRA: Ch_001MUESTREO: Centro de AcopioAPLICACIÓN: Concreto

MUESTRA : M-1, 2, 3

TABLA N° 15 CONTENIDO DE HUMEDAD DEL AGREGADO GRUESO REDONDEADO

CONTENIDO DE HUMEDAD						
MUESTRA	AGREGAI	OO GRUESO REDO	ONDEADO			
	1	2	3			
Peso del Recipiente	gr.	177.4	129	98.4		
Peso del Recipiente + Muestra Humeda	gr.	673.9	669.9	712.8		
Peso del Recipiente + Muestra Seca	gr.	669.1	665.4	707.5		
Peso del Agua	gr.	4.8	4.5	5.3		
Peso de la Muestra Seca Neta	gr.	491.7	536.4	609.1		
Porcentaje de Humedad	%	0.98	0.84	0.87		
Promedio	%		0.90			

ENSAYO: CONTENIDO DE HUMEDAD DEL AGREGADO GRUESO ANGULAR	
NORMA:ASTM C-566 O NTP 185.2002	

CANTERA : Cono Sur

UBICACIÓN: TacnaTIPO/COD. MUESTRA: Ch_002MUESTREO: Centro de AcopioAPLICACIÓN: Concreto

CESTREO . Centro de Acopio

MUESTRA : M-1, 2, 3

TABLA N° 16 CONTENIDO DE HUMEDAD DEL AGREGADO GRUESO ANGULAR

CONTENIDO DE HUMEDAD						
MUESTRA	AGREG	ADO GRUESO AN	GULAR			
	1	2	3			
Peso del Recipiente	gr.	102.4	177.5	129.1		
Peso del Recipiente + Muestra Humeda	gr.	688.3	696.2	657.7		
Peso del Recipiente + Muestra Seca	gr.	684.1	692.2	653		
Peso del Agua	gr.	4.2	4.00	4.7		
Peso de la Muestra Seca Neta	gr.	581.7	514.7	523.9		
Porcentaje de Humedad	%	0.72	0.78	0.90		
Promedio	%		0.80			

3.1.2 Ensayo de Granulometría del Agregado y Modulo de Fineza

Es la distribución por tamaño de las partículas de un árido o agregado para conocer la distribución de tamaños de las partículas que componen una muestra de árido se separan estos mediante tamices.

En toda la aplicación se fijaron los límites inferiores y superiores que dan un entorno dentro del cual están comprendidos los tamaños útiles de los áridos para la aplicación en el concreto, a estos límites se les denomina usos granulométricos. Los límites de la Norma ASTM C 33 para agregado fino se indican en la Tabla Nº 11.

Procedimiento para el agregado fino y grueso.

- 1° Se seleccionó una muestra lo más representativa posible
- 2º Una vez secada la muestra se pesó 1000 gramos de agregado fino y 4000@5000 gramos de agregado grueso.
- 3º Después de la muestra anterior se hace pasar por una serie de tamices o mallas dependiendo del tipo de agregado.
- 4º La cantidad de muestra retenida en cada uno de los tamices se cuantifica en la balanza, obteniendo el peso retenido.

Se presenta a continuación las fichas sobre los ensayos realizado para granulometría de agregado fino, agregado grueso redondeado y agregado grueso angular así como los resultados en las Tablas Nº 17, 18 y 19 respectivamente.

GRANULOMETRÍA DEL AGREGADO Y MODULO DE FINEZA

ENSAYO: ANALISIS GRANULOMETRICO DE AGREGADO FINO	
NORMA: ASTM C136	

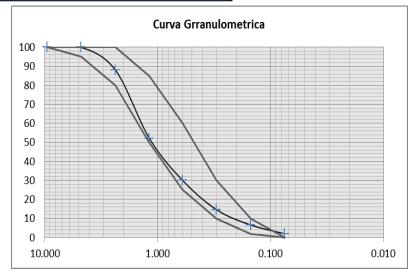
TESIS : Diferencia en la Resistencia de los Concretos por Efecto de los Tipos de Cemento Comercializados en la Ciudad de Tacna,2016

TIPO/COD. MUESTRA

APLICACIÓN

:ARENA_01 :CONCRETO

UBICACIÓN : Tacna

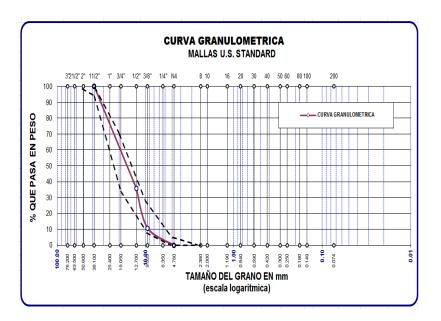

CANTERA :Cono Sur

MUESTREO :Centro de acopio

MUESTRA :M-001

TABLA N° 17 ANALISIS GRANULOMETRICO DE AGREGADO FINO

TAMIZ	ABERTURA	PESO	% PARCIAL	% ACUM	IULADO
TAMIZ	(mm)	RETENIDO	RETENIDO	RETENIDO	PASANTE
3/8"	9.500	0	0.00	0.00	100.00
N°4	4.750	0	0.00	0.00	100.00
Nº8	2.360	60	12.00	12.00	88.00
Nº16	1.180	180	36.00	48.00	52.00
N°30	0.600	110	22.00	70.00	30.00
N°50	0.300	77	15.40	85.40	14.60
N°100	0.150	40	8.00	93.40	6.60
N°200	0.075	23	4.60	98.00	2.00
BANDEJA		10	2.00	100.00	0.00
	PESO TOTAL	500	100.00		



Módulo de Fineza f: 3.1

		ENSAYO: ANALISIS GRANULOMETRICO DEL AGREGADO GRUESO REDONDEADO											
		NORMA: ASTM C136/ASTM C-33/ NTP 400.037											
TESIS		: Diferencia en la Resistencia de los Concretos por Efecto de los Tipos de Cemento Comercializados en la Ciudad de Tacna,2 TIPO/COD. MUI							JESTRA	:GRAVA_01			
UBICACIÓ	ÓN	: Tacna									APLICACIÓN		:CONCRETO
CANTERA		:Cono Sur											
MUESTREC	0	:Centro de acopio											
MUESTRA		:M-001											

${\bf TABLA~N^{\circ}~18}$ ANALISIS GRANULOMETRICO DE AGREGADO GRUESO REDONDEADO

TAMICES	ABERTURA	PESO	%RETENIDO	%RETENIDO	% QUE
ASTM	mm	RETENIDO	PARCIAL	ACUM ULADO	PASA
3"	76.200				
2 1/2"	63.500				
2"	50.600				
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.400	0.00	0.00	0.00	100.00
3/4"	19.050	0.00	0.00	0.00	100.00
1/2"	12.700	3500.00	66.16	66.16	33.84
3/8"	9.525	1110.00	20.98	87.15	12.85
1/4"	6.350				
No4	4.760	680.00	12.85	100.00	0.00
No8	2.380				
No10	2.000				
No16	1.190				
No20	0.840				
No30	0.590				
No40	0.420				
No 50	0.300				
No60	0.250				
No80	0.180				
No100	0.149				
No200	0.074				
TO	TAL	5290.00			

Tamaño Máximo Nominal: 1/2"

ENSAYO: ANALISIS GRANULOMETRICO DE AGREGADO GRUESO ANGULAR	
NORMA: ASTM C136	

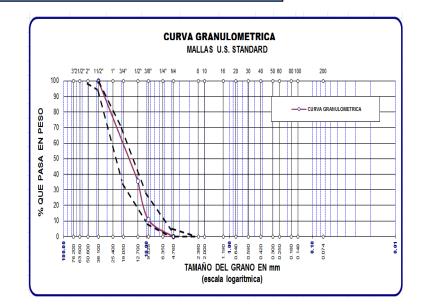
TIPO/COD. MUESTRA

:GRAVA_02

UBICACIÓN : Tacna

:Cono Sur

APLICACIÓN


:CONCRETO

CANTERA :Centro de acopio MUESTREO

MUESTRA :M-002

TABLA N° 19 ANALISIS GRANULOMETRICO DE AGREGADO GRUESO ANGULAR

TAMICES	ABERTURA	PESO	%RETENIDO	%RETENIDO	% QUE
ASTM	mm	RETENIDO		A C UM ULA DO	PASA
3"	76.200				
2 1/2"	63.500				
2"	50.600				
1 1/2"	38.100	0.00	0.00	0.00	100.00
1"	25.400	0.00	0.00	0.00	100.00
3/4"	19.050	0.00	0.00	0.00	100.00
1/2"	12.700	3250.00	64.29	64.29	35.71
3/8"	9.525	1255.00	24.83	89.12	10.88
1/4"	6.350				
No4	4.760	550.00	10.88	100.00	0.00
No8	2.380				
No10	2.000				
No16	1.190				
No20	0.840				
No30	0.590				
No40	0.420				
No 50	0.300				
No60	0.250				
No80	0.180				
No100	0.149				•
No200	0.074				
	·				
TO	TAL	5055.00			

Tamaño Máximo Nominal: 1/2"

3.1.3 Ensayo de Peso Específico y Absorción

Se define como gravedad específica de un agregado, la relación de su peso respecto al peso de un volumen absoluto igual de agua (agua desplazada por inmersión), se usa en ciertos cálculos para proporcionar las mezclas y el control.

Procedimiento.

- 1º Se seleccionó por cuarteo una cantidad aproximada de 1000 gramos que se secó en el horno a 110°C, luego se enfrió al aire a la temperatura ambiente durante 3 horas.
- 2º Una vez fría se pesa, repitiendo el secado hasta lograr peso constante, a continuación se cubrió la muestra completamente con agua y se dejó así sumergida durante 24 horas.
- Después del periodo de inmersión, se decanta cuidadosamente el agua para evitar la pérdida de finos y se extiende la muestra sobre una bandeja, comenzando con la operación de secar la superficie de las partículas, dirigiendo sobre ella una corriente moderada de aire caliente, mientras se remueve continuamente para que la desecación sea uniforme y continuando el secado hasta que las partículas puedan fluir libremente.
- 4º Cuando se observó que el agregado se aproximaba al secado, se sujetó firmemente el molde cónico con su diámetro mayor apoyado

sobre una superficie plana no absorbente, echando en su interior a través de un embudo una cantidad de muestra suficiente, que se apisonó ligeramente con 25 golpes de varilla, levantando a continuación con cuidado verticalmente el molde, y se observó un desmoronamiento superficial, indicativo de que finalmente ha alcanzado el agregado la condición de superficie seca.

- Inmediatamente se introdujo en el picnómetro previamente tarado, 100 gamos del agregado fino y se añadió agua aproximadamente hasta un 90% de su capacidad, para eliminar el aire atrapado se rueda el picnómetro sobre una superficie plana, agitando e introduciéndolo en un baño de agua a una temperatura entre 21°C y 25°C durante 1 hora, transcurrido el tiempo se enraso con agua a nivel de temperatura, se sacó del baño maría, se secó rápidamente su superficie y se determinó su peso total.(picnómetro + mezcla + agua).
- 6° Se retiró el agregado fino del matraz y se secó al horno entre 100°C @110°C, se enfría al aire a temperatura ambiente durante 1.5 horas y se determinó su peso seco.

Se presenta a continuación las fichas sobre los ensayos realizados para peso específico y absorción de agregado fino, agregado grueso redondeado y agregado grueso angular así como los resultados en las Tablas Nº 21, 22, 23, 24 y 25 respectivamente.

ENSAYO: PESO ESPECIFICO Y ABSORCION DEL AGREGADO FINO NORMA:ASTM C-128 /NTP 400.021

TESIS : Diferencia en la Resistencia de los Concretos por Efecto de los Tipos de Cemento Comercializados en la Ciudad de Tacna, 2016

CANTERA : Cono Sur

UBICACIÓN: TacnaTIPO/COD. MUESTRA: Pe_001MUESTREO: Centro de AcopioAPLICACIÓN: Concreto

MUESTRA : M-1, 2, 3

TABLA N° 20 PESO ESPECÍFICO DEL AGREGADO FINO SEGÚN MUESTRA

MUESTRA	1	2	3
Peso de la fiola + muestra + Agua	791.5	791.3	791.1
Peso de la fiola + Agua	666.6	665.9	666.4
Peso de la muestra (sss)	198.0	203.0	200.0
Volumen desplazado	73.1	77.6	75.3
Peso específico	2.709	2.616	2.656
Promedio	gr.c	2.66	

TABLA N° 21 ABSORCIÓN DEL AGREGADO FINO SEGÚN MUESTRA

MUESTRA	1	2	3			
Peso de la muestra (sss)	200.0	200.0	220.0			
Peso de la muestra seca	196.7	197.1	216.6			
Peso del Agua	3.3	2.9	3.4			
Porcentaje de Absorción	1.69	1.47	1.57			
Promedio		1.58				

ENSAYO: PESO ESPECIFICO Y ABSORCION DEL AGREGADO GRUESO REDONDEADO NORMA: ASTM C-127

TESIS : Diferencia en la Resistencia de los Concretos por Efecto de los Tipos de Cemento Comercializados en la Ciudad de Tacna, 2016

CANTERA : Cono Sur

UBICACIÓN: TacnaTIPO/COD. MUESTRA: Pe_001MUESTREO: Centro de AcopioAPLICACIÓN: Concreto

MUESTRA : M-1, 2, 3

TABLA N° 22 PESO ESPECÍFICO DEL AGREGADO GRUESO REDONDEADO SEGÚN **MUESTRA** MUESTRA 2 3 1 Peso de la Muestra Seca 339.8 345.5 331.7 gr. 500.0 500.0 500 Volumen Inicial gr. Volumen Final 627.0 627.5 626 g. Volumen desplazado 127.0 127.5 125.6 cc. Peso específico 2.710 gr/cc. 2.676 2.641 Peso específico Promedio 2.680 gr/cc.

TABLA N° 23 ABSORCIÓN DEL AGREGADO GRUESO REDONDEADO SEGÚN MUESTA								
MUESTRA		1	2	3				
Peso de la Muestra (sss)	gr.	400.1	466.2	430.6				
Peso de la Muestra Seca	gr.	395.8	460.9	426.3				
Peso del Agua	gr.	4.3	5.3	4.3				
Porcentaje de Absorcion	%	1.1	1.1	1.0				
Promedio	%		1.1					

ENSAYO: PESO ESPECIFICO Y ABSORCION DEL AGREGADO GRUESO ANGULAR NORMA: ASTM C-127

TESIS : Diferencia en la Resistencia de los Concretos por Efecto de los Tipos de Cemento Comercializados en la Ciudad de Tacna, 2016

CANTERA : Cono Sur

UBICACIÓN : Tacna TIPO/COD. MUESTRA : Pe_002

MUESTREO : Centro de Acopio APLICACIÓN : Concreto

MUESTRA

TABLA N° 24
PESO ESPECÍFICO DEL AGREGADO GRUESO ANGULAR SEGÚN

MUESTRA 2 Peso de la Muestra Seca 337.2 342.5 330.1 gr. Volumen Inicial 500.0 500.0 500 gr. 627.0 626 Volumen Final 627.5 g. 127.0 127.5 125.6 Volumen desplazado cc. Peso específico gr/cc. 2.655 2.686 2.628 2.66 Peso específico Promedio gr/cc.

TABLA N° 25 ABSORCIÓN DEL AGREGADO GRUESO ANGULAR SEGÚN MUESTRA

MUESTRA		1	2	3	
Peso de la Muestra (sss)	gr.	400.9	465.5	429.9	
Peso de la Muestra Seca	gr.	395.8	460.9	426.3	
Peso del Agua	gr.	5.1	4.6	3.6	
Porcentaje de Absorcion	%	1.3	1.0	0.8	
Promedio	%	1.0			

Fuente: Elaboración Propia

: M-1, 2, 3

MUESTRA

3.1.4 Ensayo de Peso Unitario Suelto y Compactado

Mediante este ensayo se obtiene el peso unitario del agregado ya sea suelto y compactado (varillado), como también el cálculo de vacíos en ambos agregados y una mezcla de ambos.

Procedimiento Peso Unitario Suelto (PUS)

Los procedimientos para determinar el peso unitario suelto para el agregado fino y agregado grueso fueron similares:

- 1º Se secó la muestra de arena al sol y se pesó en la balanza, anotando el peso.
- 2º Se pesó el recipiente vacío y empleando el cucharon se tomó la muestra de material y se dejó caer dentro del recipiente desde una altura de 5 cm., a partir de la superficie del recipiente, hasta llenarlo, evitando que el material se reacamode por movimientos indebidos; después se procedió a enrasar utilizando la regla de 30 cm.
- 3º Se pesó el recipiente con el material incluido y se registró su peso con aproximación de 5 gramos.

Procedimiento Peso Unitario Compactado (PUC)

Se siguió el siguiente procedimiento:

- 1° El agregado se colocó en el recipiente dejando caer de una altura
 de 5 cm. A partir de la superficie del recipiente.
- 2º Se llenó el recipiente en tres capas, dándose 25 golpes de varilla a cada capa, después se procedió a enrasar utilizando la regla metálica de 30 cm.
- 3º Se pesó el recipiente con el material incluido y se registró su peso con aproximadamente de 5 gramos.

Se presenta a continuación las fichas sobre los ensayos realizado para peso unitario suelto y compactado de agregado fino, agregado grueso redondeado y agregado grueso angular, así como los resultados en las Tablas Nº 26, 27 y 28 respectivamente.

ENSAYO: PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO FINO	
NORMA:ASTM C-29 O NTP 400.017	

CANTERA : Cono Sur

UBICACIÓN: TacnaTIPO/COD. MUESTRA: Pu_001MUESTREO: Centro de AcopioAPLICACIÓN: Concreto

MUESTRA : M-1, 2, 3

${\bf TABLA~N^\circ~26}$ PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO FINO SEGÚN MUESTRA

MUESTRA		MA	TERIAL SUEL	TO	MATERIAL COMPACTADO		
MUESTRA		1	2	3	1	2	3
Peso del Molde + Muestra Seca	gr.	20074	20245	20227	21521	21618	21580
Peso del Molde	gr.	4030	4030	4030	4030	4030	4030
Peso de la Muestra Seca Neta	gr.	16044	16215	16197	17491	17588	17550
Volumen del Molde	cc.	9348	9348	9348	9348	9348	9348
Peso Unitaio	gr./cc	1.72	1.73	1.73	1.87	1.88	1.88
Promedio	gr./cc		1.73			1.88	

ENSAYO: PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO GRUESO	
REDONDEADO NORMA: ASTM C-29 O NTP 400.017	

CANTERA : Cono Sur

UBICACIÓN: TacnaTIPO/COD. MUESTRA: Pu_001MUESTREO: Centro de AcopioAPLICACIÓN: Concreto

MUESTRA : M-1, 2, 3

TABLA N° 27 PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO GRUESO REDONDEADO SEGÚN MUESTRA

MUESTRA		MA	TERIAL SUEI	LTO	MATERIAL COMPACTADO		
		1	2	3	1	2	3
Peso del Molde + Muestra !	gr.	18828	18809	18847	19955	19380	19509
Peso del Molde	gr.	4030	4030	4030	4030	4030	4030
Peso de la Muestra Seca Ne	gr.	14798	14779	14817	15925	15350	15479
Volumen del Molde	cc.	9348	9348	9348	9348	9348	9348
Peso Unitaio	gr./cc	1.58	1.58	1.59	1.70	1.64	1.66
Promedio	gr./cc		1.58			1.67	

ENSAYO: PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO GRUESO ANGULAR	
NORMA:ASTM C-29 O NTP 400.017	

CANTERA : Cono Sur

UBICACIÓN: TacnaTIPO/COD. MUESTRA: Pu_002MUESTREO: Centro de AcopioAPLICACIÓN: Concreto

MUESTRA : M-1, 2, 3

TABLA N° 28 PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO GRUESO ANGULAR SEGÚN MUESTRA

MUESTRA		MATERIAL SUELTO			MATERIAL COMPACTADO		
		1	2	3	1	2	3
Peso del Molde + Muestra !	gr.	17416	17474	17287	18502	18479	18580
Peso del Molde	gr.	4460	4460	4460	4460	4460	4460
Peso de la Muestra Seca Ne	gr.	12956	13014	12827	14042	14019	14120
Volumen del Molde	cc.	9348	9348	9348	9348	9348	9348
Peso Unitaio	gr./cc	1.39	1.39	1.37	1.50	1.50	1.51
Promedio	gr./cc		1.38			1.50	

CAPITULO IV

DISEÑO DE MEZCLAS

4.1 DISEÑO DE MEZCLA POR METODO ACI-COMITÉ 211 CON AGREGADO REDONDEADO

El del ACI-Comité 211, ha desarrollado un procedimiento de diseño de mezclas de concreto bastante simple, el cual, basándose en algunas tablas, permiten obtener valores de los diferentes materiales que integran la unidad cubica de concreto.

El procedimiento para la selección de las proporciones que se presenta para este método, es aplicable a concretos de peso normal y a las condiciones que para cada una de las tablas se indica en ellas.

La secuencia de diseño de mezclas que recomienda el ACI-Comité 211, esta ordenado de tal forma de que tanto los estudiantes como los profesionales de la ingeniería puedan diseñar mezclas en forma sencilla; siempre y cuando conozcan las definiciones y propiedades de los materiales integrantes.

La secuencia de diseño es la siguiente:

- Selección de la resistencia promedio a partir de la resistencia en compresión especificada (por el Proyectista o Expediente Técnico)
- 2. Selección del Tamaño Máximo Nominal (TMN) del agregado grueso.
- 3. Selección del asentamiento.
- 4. Selección del volumen unitario de agua de diseño (Tabla).
- 5. Selección del contenido de aire (Tablas).

- 6. Selección de la relación agua-cemento (a/c) por resistencia o por durabilidad.
- 7. Determinación del Factor Cemento(FC)
- 8. Determinación del contenido de agregado grueso (Tabla).
- Determinación de la suma de los volúmenes absolutos de cemento, agua de diseño, aire y agregado grueso. (C+Agua+Ai+Agr)
- Determinación del volumen absolutos de cemento, agua de diseño, aire y agregado grueso)
- 11. Determinación de los valores de diseño de los componentes del concreto.
- Corrección de los valores de diseño por humedad y absorción del agregado fino y grueso.
- 13. Determinación de las proporciones en peso
- 14. Determinación de los pesos por tanda de una bolsa

4.1.1 Selección de la Resistencia Requerida (f'cr)

La resistencia en compresión de diseño especificada es de f'c = 210 kg/cm2, a los 28 días ya que será empleado para elementos estructurales tales como vigas y columnas, por ende utilizaremos la siguiente tabla:

TABLA N° 29 RESISTENCIA DEL CONCRETO A LA COMPRESIÓN PROMEDIO					
f´c	f' cr				
Menos de 210	f'c + 70				
210 a 350	f'c + 84				
Sobre 350	f'c + 98				

Fuente: ACI-Comité 211

4.1.2 Calculo de la Resistencia Requerida

Esta resistencia requerida se utilizará para ambos casos de diseño Método ACI-Comité 211 y Método Walker.

Entonces reemplazando en la fórmula de la Tabla 29

$$f'c + 84$$

$$210 + 84 = 294$$

$$f'cr = 294 \, kg/cm2$$

4.1.3 Selección del Tamaño Máximo Nominal del Agregado Grueso

El Tamaño Máximo Nominal lo obtenemos como resultado de nuestra granulometría del agregado grueso redondeado de la tabla 18, siendo de 1/2".

4.1.4 Seleccionamos el Asentamiento

El asentamiento seleccionado será de 3" a 4", este asentamiento es utilizado en vigas, columnas y muros armados, siendo un asentamiento de consistencia plástica.

4.1.5 Seleccionamos el Volumen Unitario de Agua de Diseño.

En este caso el volumen unitario de agua lo obtenemos de la tabla elaborada por el ACI-Comité 211.

TABLA N° 30 REQUERIMIENTOS APROXIMADOS DE AGUA DE MEZCLADO Y CONTENIDO DE AIRE PARA DIFERENTES VALORES DE ASENTAMIENTO Y TAMAÑOS MÁXIMOS DE AGREGADOS

ASENTAMIENTO O SLUMP (mm)		_	Agua en lt/m^3 de concreto para los tamaños máximos de agregados gruesos y consistencia indicados.						
OLOWII	()	10mm	12.5mm	20mm	25mm	40mm	50mm	70mm	150mm
		(3/8")	(1/2")	(3/4")	(1")	(11/2")	(2")	(3")	(6")
		CONC	RETOS S	IN AIRE	INCORP	ORADO			
30 a 50	(1" a 2")	205	200	185	180	160	155	145	125
80 a 100	(3" a 4")	225	215	200	195	175	170	160	140
150 a 180	(6" a 7")	240	230	210	205	185	180	170	
Cantidad a de aire atra		3	2.5	2	1.5	1	0.5	0.3	0.2
		CONC	RETOS CO	ON AIRE	INCORF	ORADO			
30 a 50 80 a 100	(1" a 2") (3" a 4")	180 200	175 190	165 180	160 175	145 160	140 155	135 150	120 135
150 a 180	(6" a 7")	215	205	190	185	170	165	160	
Contenido total de aire	Exposición suave	4.5	4.0	3.5	3.0	2.5	2.0	1.5*	1.0*
incorporado (%), en función del	Exposición moderada	6.0	5.5	5.0	4.5	4.5	4.0	3.5*	3.0*
grado de exposición.	Exposición severa	7.5	7.0	6.0	6.0	5.5	5.0	4.5*	4.0*

Fuente: ACI- Comité 211

Ingresando a la tabla de doble entrada, elaborada por el ACI-Comité 211; para un asentamiento de 3" a 4" y un Tamaño máximo Nominal de 1/2", obtenemos un volumen unitario de agua de 215 Lt/m3.

4.1.6 Selección del Contenido de Aire Atrapado.

El aire atrapado lo seleccionamos de la Tabla 31, en porcentaje de acuerdo a nuestro Tamaño Máximo Nominal, siendo:

TABLA N° 31 AIRE ATRAPADO SEGÚN TAMAÑO MÁXIMO NOMINAL

Tamaño Máximo Nominal	Aire Atrapado
Del Agregado grueso.	•
3/8"	3.0 %
1/2"	2.5 %
3/4"	2.0 %
1"	1.5 %
1 ½"	1.0 %
2"	0.5 %
3"	0.3 %
4"	0.2%

Fuente: ACI –Comité 211

Nuestro Tamaño Máximo Nominal es de 1/2, por lo tanto el porcentaje de aire atrapado será de 2.5%.

4.1.7 Selección de la Relación Agua/Cemento (a/c) por Resistencia a Compresión.

No presentándose en este caso problemas de intemperismo ni de ataques por sulfatos, u otro tipo de acciones que pudieran dañar al concreto, se utilizara la relación agua-cemento por resistencia.

TABLA N° 32 RELACIÓN AGUA – CEMENTO POR RESISTENCIA A LA COMPRESIÓN

RESISTENCIA A LA COMPRESION	RELACION AGUA/CEMENTO DE DISEÑO EN PESO		
A LOS 28 DIAS (f'cr) (kg/cm2)*	CONCRETO SIN AIRE INCORPORADO	CONCRETO CON AIRE INCORPORADO	
450	0.38		
400	0.43		
350	0.48	0.40	
300	0.55	0.46	
250	0.62	0.53	
200	0.70	0.61	
150	0.80	0.71	

Fuente: ACI -Comité 211

Ingresando a la tabla; vemos que para una f'c = 294Kg/cm2, y concreto sin aire incorporado obtenemos por regla de tres simple con límite superior e inferior una relación agua cemento de:

Se interpola los valores para hallar la relación a/c:

$$\frac{250 - 300}{0.62 - 0.55} = \frac{250 - 294}{0.62 - X}$$

Despejando X, se obtiene:

$$X = 0.62 - \frac{44 * 0.07}{50}$$

$$X = 0.56$$

4.1.8 Determinación del Factor Cemento.

El factor cemento se obtiene dividiendo el volumen unitario de agua entre la relación agua-cemento.

$$Factor \ Cemento \ = \frac{Volumen \ Unitario}{a/c}$$

$$Factor\ cemento = \frac{215\ Lt/m3}{0.56}$$

$Factor\ cemento = 384\ Kg/m3$

Entonces tenemos que el factor cemento o la cantidad de cemento es de 384 Kg/m3. (Lo mismo que decir que se necesitara 384 kilogramos de cemento para elaborar 1 m3 de concreto).

4.1.9 Determinación del Contenido de Agregado Grueso.

La determinación del contenido del agregado grueso se obtiene mediante la utilización de tablas. Se identifica el módulo de fineza del agregado fino y el Tamaño Máximo Nominal.

TABLA N° 33 VOLÚMEN DE AGREGADO GRUESO POR UNIDAD DE VOLÚMEN DE CONCRETO

TAMAÑO MA AGREGADO		Volumen de agregado grueso, seco y compactado por unidad de volumen de concreto, para diferentes módulos de fineza del agregado fino. MODULO DE FINEZA DEL AGREG. FINO						
mm.	Pulg.	2.40	2.40 2.60 2.80 3.00					
10	3/8"	0.50	0.48	0.46	0.44			
12.5	1/2"	0.59	0.57	0.55	0.53			
20	3/4"	0.66	0.64	0.62	0.60			
25	1"	0.71	0.69	0.67	0.65			
40	1 ½"	0.76	0.74	0.72	0.70			
50	2"	0.78	0.76	0.74	0.72			
70	3"	0.81	0.79	0.77	0.75			
150	6"	0.87	0.85	0.83	0.81			

Fuente: ACI -Comité 211

Con los valores obtenidos en laboratorio, el número que representa el módulo de fineza es de 3.1, como este valor no se encuentra en la tabla tenemos que dar el valor según la progresión aritmética que disminuye en 0.02, para posteriormente interpolar y obtener la relación de agregados.

Según la progresión aritmética para un módulo de fineza de $3.1\,\mathrm{y}$ un Tamaño máximo Nominal de 1/2" el valor es de $0.52\,\mathrm{m}$

Este valor lo aplicamos a la relación:

$$Cont. Agr. Grueso = \frac{b}{b_o} x P. U.C. Agr. Grueso$$

$$Cont.Agr.Grueso = 0.52 * 1500 = 780Kg/m3$$

4.1.10 Determinación de la suma de los Volúmenes Absolutos de Cemento, Agua de Diseño, Aire y Agregado Grueso, y Peso del Agregado Fino.

Hasta este punto se conoce el peso del cemento, agua y agregado grueso, así como el volumen de aire atrapado; por tanto podemos calcular la suma de los volúmenes absolutos:

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

	Dato de Diseño	Peso Específico	Volumen
Cemento	384.00	2850	0.135
Agua	215	1000	0.215
Aire Atrapado	2.5	1000	0.025
Ag. Grueso	780	2680	0.291
Ag. Fino		2660	0.334

Peso de Ag. Fino = 889 Kg/m3

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

	Dato de Diseño	Peso Específico	Volumen
Cemento	384	2980	0.129
Agua	215	1000	0.215
Aire Atrapado	2.5	1000	0.025
Ag. Grueso	780	2680	0.291
Ag. Fino		2660	0.340

Peso de Ag. Fino = 904 Kg/m3

C. Cemento Sol Portland Tipo-I

	Dato de Diseño	Peso Específico	Volumen
Cemento	384	3150	0.122
Agua	215	1000	0.215
Aire Atrapado	2.5	1000	0.025
Ag. Grueso	780	2680	0.291
Ag. Fino		2660	0.347

Peso de Ag. Fino = 923 Kg/m3

4.1.11 Correcciones por Humedad y Absorción.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

Procedemos a realizar la corrección por humedad y absorción del agregado.

Debemos tener en cuenta que solo hemos obtenido los valores de agregado en estado seco:

Peso H. del Ag.Fino = 889Kg/m3 * 1.014 = 901 Kg/m3

Peso H. del Ag. Grueso = 780Kg/m3 * 1.009 = 787Kg/m3

Determinamos la humedad superficial del agregado fino y grueso:

$$Agregado\ Fino = 1.37 - 1.58 = -0.21\%$$

$$Agregado\ Grueso\ = 0.9-1.00\ = -0.1\%$$

Calculamos el aporte de humedad:

$$Agregado\ Fino = 889x(-0.0021) = -2Lt/m3$$

$$Agreado\ Grueso = 780x(-0.001) = -0.8Lt/m3$$

Aporte total de humedad de agregados = -2.8Lt/m3

Por lo tanto como el agregado no presenta aporte de humedad, tendremos que aumentar a la cantidad de agua obtenida inicialmente para tener el agua efectiva:

$$Agua\ efectiva = 215Lt/m3 + 2.8Lt/m3 = 218\ Lt/m3$$

Entonces los pesos de los materiales corregidos serán los siguientes:

Cemento = 384 kg/m3

Agua efectiva = 218Lt/m3

Agregado Fino = 901 Kg/m3

Agregado Grueso = 787 Kg/m3

Para la determinación de la proporción en peso, todos los componentes de concreto se dividen entre la cantidad de cemento.

Cemento
$$= 384/384$$

Agregado Fino
$$= 901/384$$

Dando como resultado:

1:2.35:2.05:0.57

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

Procedemos a realizar la corrección por humedad y absorción del agregado.

Debemos tener en cuenta que solo hemos obtenido los valores de agregado en estado seco.

Peso H. del Ag. Fino =
$$904Kg/m3 * 1.014 = 917 Kg/m3$$

Peso H. del Ag. Grueso =
$$780Kg/m3 * 1.009 = 787Kg/m3$$

Determinamos la humedad superficial del agregado fino y grueso

$$Agregado\ Fino = 1.37 - 1.58 = -0.21\%$$

$$Agregado\ Grueso = 0.9 - 1.00 = -0.1\%$$

Calculamos el aporte de humedad:

$$Agregado\ Fino = 904x(-0.0021) = -2Lt/m3$$

$$Agreado\ Grueso = 780x(-0.001) = -0.8Lt/m3$$

Aporte total de humedad de agregados = -2.8Lt/m3

Por lo tanto como el agregado no presenta aporte de humedad, tendremos que aumentar a la cantidad de agua obtenida inicialmente para tener el agua efectiva:

Agua efectiva =
$$215Lt/m3 + 2.8Lt/m3 = 218 Lt/m3$$

Entonces los pesos de los materiales corregidos serán los

Cemento = 384 kg/m3

siguientes:

Agua efectiva = 218Lt/m3

Agregado Fino = 917 Kg/m3

Agregado Grueso = 787 Kg/m3

Para la determinación de la proporción en peso, todos los componentes de concreto se dividen entre la cantidad de cemento

Cemento = 384 / 384

Agregado Fino = 917/384

Agregado Grueso = 787 / 384

Dando como resultado:

1:2.39:2.05:0.57

C. Cemento Sol Portland Tipo-I

Procedemos a realizar la corrección por humedad y absorción del agregado.

Debemos tener en cuenta que solo hemos obtenido los valores de agregado en estado seco.

Peso H. del Ag. Fino =
$$923Kg/m3 * 1.014 = 936 Kg/m3$$

Peso H. del Ag. Grueso =
$$780Kg/m3 * 1.009 = 787Kg/m3$$

Determinamos la humedad superficial del agregado fino y grueso

$$Agregado\ Fino = 1.37 - 1.58 = -0.21\%$$

$$Agregado\ Grueso = 0.9 - 1.00 = -0.1\%$$

Calculamos el aporte de humedad:

$$Agregado\ Fino = 923x(-0.0021) = -2Lt/m3$$

$$Agreado\ Grueso = 780x(-0.001) = -0.8Lt/m3$$

Aporte total de humedad de agregados = -2.8Lt/m3

Por lo tanto como el agregado no presenta aporte de humedad, tendremos que aumentar a la cantidad de agua obtenida inicialmente para tener el agua efectiva:

$$Agua\ efectiva = 215Lt/m3 + 2.8Lt/m3 = 218\ Lt/m3$$

Entonces los pesos de los materiales corregidos serán los siguientes:

Cemento
$$= 384 \text{ kg/m}3$$

Agua efectiva =
$$218Lt/m3$$

Agregado Fino
$$= 936 \text{ Kg/m}3$$

Para la determinación de la proporción en peso, todos los componentes de concreto se dividen entre la cantidad de cemento

Cemento
$$= 384 / 384$$

Agregado Fino
$$= 936/384$$

Dando como resultado:

1:2.44:2.05:0.57

4.1.12 Presentación Final del Diseño

Este diseño se presenta en tandas de acuerdo a la capacidad de la mezcladora que se tiene en el laboratorio.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

COMPONENTE	kg/1m3	Diseño 30 Briq.	3 Briquetas	
Cemento	384	61.23	6.12	Kg.
Agua Efectiva	218	34.76	3.48	Lt.
Ag. Fino	922	143.66	14.37	Kg.
Ag. Grueso	787	125.49	12.55	Kg.

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

COMPONENTE	kg/1m3	Diseño 30 Briq.	3 Briquetas	
Cemento	384	61.23	6.12	Kg.
Agua Efectiva	218	34.76	3.48	Lt.
Ag. Fino	917	146.22	14.62	Kg.
Ag. Grueso	787	125.49	12.55	Kg.

C. Cemento Portland Sol Tipo-I

COMPONENTE	kg/1m3	Diseño 30 Briq.	3 Briquetas	
Cemento	384	61.23	6.12	Kg.
Agua Efectiva	218	34.76	3.48	Lt.
Ag. Fino	936	149.25	14.92	Kg.
Ag. Grueso	787	125.49	12.55	Kg.

4.2 DISEÑO DE MEZCLA POR EL MÉTODO WALKER CON AGREGADO ANGULAR

El Método de Walker, se desarrolla principalmente a la preocupación del Profesor Norteamericano Stanron Walker en relación con el hecho que, sea cual fuera la resistencia de diseño de concreto y por tanto su relación agua-cemento, contenido de cemento y características del agregado fino, la calidad del agregado era la misma, ello cuando se aplicaba el procedimiento de diseño desarrollado por el ACI-Comité 211.

Considerando que la relación fino-grueso debería variar en función del contenido de la pasta en mezcla, así como del perfil y tamaño máximo nominal el agregado grueso, y que otro factor que debería ser considerado era la mayor o menor fineza del agregado fino, el profesor Walker desarrollo una serie de tablas en donde consideró la fineza del agregado fino, clasificándolo en tres categorías, fino, mediano y grueso. Igualmente se considera si el agregado es de perfil redondeado o angular y, para cada uno de los dos casos se considera cuatro alternativas de factor cemento. Todo ello permite encontrar en la tabla un porcentaje de agregado fino que se considera con el más conveniente en relación al volumen absoluto total de agregado.

Calculando el volumen absoluto de agregado fino, se determina el agregado grueso por diferencia con el volumen absoluto total de agregado, conocidos ambos, se determina el peso seco de cada uno de ellos en la mezcla.

4.2.1 Selección de la Resistencia Requerida (f'cr)

De igual manera que el diseño ACI-Comité 211, se sigue la misma metodología, obteniendo el siguiente resultado

TABLA N° 34 RESISTENCIA DEL COCNRETO A LA COMPRESIÓN PROMEDIO					
f'c f' cr					
Menos de 210	f´c + 70				
210 a 350 f'c + 84					
Sobre 350	f'c + 98				

Fuente: ACI-Comité 211

4.2.2 Selección del Tamaño Máximo Nominal del Agregado Grueso

El Tamaño Máximo Nominal lo obtenemos como resultado de nuestra granulometría del agregado grueso redondeado de la Tabla 18, siendo de 1/2".

4.2.3 Seleccionamos el Asentamiento

El asentamiento seleccionado será de 3" a 4", este asentamiento es utilizado en vigas, columnas y muros armados, siendo un asentamiento de consistencia plástica.

4.2.4 Selección del Contenido de Agua

En este caso el volumen unitario de agua lo obtenemos de la Tabla elaborada por el ACI-Comité 211

	TABLA N° 35 CONTENIDO DE AGUA EN EL CONCRETO							
Tamaño máximo nominal Contenido de agua en el concreto, expresado en lt/m^3 , para los asentamientos y perfiles de agregado grueso indicados.								
agre	lel gado ieso	25mm a 50mm (1"-2") 75mm a 100mm (3"-4") 150mm a 175mm (6"-7")						
mm.	Pulg.	Agregado redondeado						
9.5 12.7 19.1 25.4 38.1 50.8 76.2	3/8" 1/2" 3/4" 1" 1½" 2" 3"	185 182 170 163 155 148 136	212 201 189 182 170 163 151	201 197 185 178 170 163 151	227 216 204 197 185 178	230 219 208 197 185 178 163	250 238 227 216 204 197 182	

Fuente: Prof. Walker

Ingresando a la tabla de doble entrada, elaborada por el profesor Walker; para un asentamiento de 3" a 4" y un TMN de 1/2" y de perfil anguloso, obtenemos un volumen unitario de agua de 216 Lt/m3.

4.2.5 Selección del Contenido de Aire Atrapado.

El aire atrapado lo seleccionamos de la tabla 31, en porcentaje de acuerdo a nuestro Tamaño Máximo Nominal, siendo:

TABLA N° 36 AIRE ATRAPADO SEGÚN EL TAMAÑO MÁXIMO NOMINAL

Tamaño Máximo	
Nominal	Aire Atrapado
Del Agregado grueso.	
3/8"	3.0 %
1/2"	2.5 %
3/4"	2.0 %
1"	1.5 %
1 ½"	1.0 %
2"	0.5 %
3"	0.3 %
4"	0.2%

Fuente: ACI -Comité 211

Nuestro Tamaño Máximo Nominal es de 1/2, por lo tanto el porcentaje de aire atrapado será de 2.5%.

4.2.6 Selección de la Relación Agua/Cemento (a/c) por Resistencia a Compresión.

No presentándose en este caso problemas de intemperismo ni de ataques por sulfatos, u otro tipo de acciones que pudieran dañar al concreto, se utilizara la relación agua-cemento por resistencia.

TABLA N° 37 RELACIÓN AGUA CEMENTO POR RESISTENCIA A LA COMPRESIÓN

RESISTENCIA A LA COMPRESION	RELACION AGUA/CEMENTO DE DISEÑO EN PESO				
A LOS 28 DIAS (f'cr) (kg/cm2)*	CONCRETO SIN AIRE INCORPORADO	CONCRETO CON AIRE INCORPORADO			
450	0.38				
400	0.43				
350	0.48	0.40			
300	0.55	0.46			
250	0.62	0.53			
200	0.70	0.61			
150	0.80	0.71			
1					

Fuente: ACI – Comité 211

Ingresando a la tabla; vemos que para una f'c = 294Kg/cm2, y concreto sin aire incorporado obtenemos por regla de tres simple con límite superior e inferior una relación agua cemento de:

Se interpola los valores para hallar la relación a/c:

$$\frac{250 - 300}{0.62 - 0.55} = \frac{250 - 294}{0.62 - X}$$

Despejando X, se obtiene:

$$X = 0.62 - \frac{44 * 0.07}{50}$$

$$X = 0.56$$

4.2.7 Determinación del Factor Cemento.

El factor cemento se obtiene dividiendo el volumen unitario de agua entre la relación agua-cemento.

$$Factor \; Cemento \; = \frac{Volumen \; Unitario}{a/c}$$

$$Factor\ cemento = \frac{216\ Lt/m3}{0.56}$$

$$Factor\ cemento = 386\ Kg/m3$$

Entonces tenemos que el factor cemento o la cantidad de cemento es de 386 Kg/m3. (Lo mismo que decir que se necesitara 384 kilogramos de cemento para elaborar 1 m3 de concreto).

4.2.8 Cálculo de Volumen Absoluto de la Pasta.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

	Dato de Diseño	Peso Específico	Volumen
Cemento	386.00	2850	0.135
Agua	216	1000	0.216
Aire Atrapado	2.5	1000	0.025

Suma de Vol. Absolutos = 0.376m3

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

	Dato de Diseño	Peso Específico	Volumen
Cemento	386	2980	0.130
Agua	216	1000	0.216
Aire Atrapado	2.5	1000	0.025

Suma de Vol. Absolutos = 0.371m3

C. Cemento Sol Portland Tipo-I

	Dato de Diseño	Peso Específico	Volumen
Cemento	386	3150	0.123
Agua	216	1000	0.216
Aire Atrapado	2.5	1000	0.025

Suma de Vol. Absolutos = 0.364m3

4.2.9 Determinación del Volumen Absoluto del Agregado Total.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

Volumen absoluto del agregado = 1 - 0.376 = 0.624m3

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

Volumen absoluto del agregado = 1 - 0.371 = 0.629m3

C. Cemento Sol Portland Tipo-I

Volumen absoluto del agregado = 1 - 0.364 = 0.636m3

4.2.10 Determinación del Agregado Fino.

TABLA N° 38 PORCENTAJE DE AGREGADO FINO

Máx	naño timo nal del	Agregado Redondeado			Agregado Angular			ar	
Agre	gado		cemento por metro		ado en		cemento por metro	expres cúbico	ado en
mm.	Pulg.	5	6	7	8	5	6	7	8
			Agregad	lo Fino –	- Módulo	de Fine	za de 2.	3 a 2.4	
10	3/8	60	57	54	51	69	65	61	58
12.5	1/2	49	46	43	40	57	54	51	48
20	3/4	41	38	35	33	48	45	43	41
25	1	40	37	34	32	47	44	42	40
40	1 1/2	37	34	32	30	44	41	39	37
50	2	36	33	31	29	43	40	38	36
70	3	34	32	30	28	41	38	36	34
			Agregad	lo Fino –	- Módulo	de Fine	za de 2.	6 a 2.7	
10	3/8	66	62	59	56	75	71	67	64
12.5	1/2	53	50	47	44	61	58	55	53
20	3/4	44	41	38	36	51	48	46	44
25	1	42	39	37	35	49	46	44	42
40	1 1/2	40	37	35	33	47	44	42	40
50	2	37	35	33	32	45	42	40	38
70	3	35	33	31	30	43	40	38	36
	•		Agregad	lo Fino –	- Módulo	de Fine	za de 3.	0 a 3.1	
10	3/8	74	70	66	62	84	80	76	73
12.5	1/2	59	56	53	50	70	66	62	59
20	3/4	49	46	43	40	57	54	51	48
25	1	47	44	41	38	55	52	49	46
40	1 1/2	44	41	38	36	52	49	46	44
50	2	42	38	36	34	49	46	44	42
70	3	39	36	34	32	46	43	41	39

Fuente: Prof. Walker

El módulo de fineza del agregado fino es de 3.1, además la cantidad de bolsas por metro cubico es de 9.08 el cual no se encuentra en la tabla por lo tanto para poder obtener los valores de los límites superiores e inferiores disminuimos en 4 el último valor dado para 8 bolsas según la progresión aritmética que se presenta en la tábla para su posterior interpolación.

$$\frac{9-10}{55-51} = \frac{9-9.08}{55-X}$$

$$X = 0.55 - \frac{0.08 * 4}{1}$$

$$X = 54.68$$

Con este valor hallamos el porcentaje de agregados gruesos:

$$Agregado\ Grueso = 100 - 54.68$$
 $Agregado\ Grueso = 45.32$

4.2.11 Volumen Absoluto del Agregado.

Para obtener los volúmenes absolutos del agregado fino y grueso; multiplicamos el porcentaje obtenido del agregado fino y grueso por el volumen absoluto total de agregado.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

Volumen Abs. del Ag. Fino =
$$0.5468 * 0.624 = 0.341m3$$

Volumen Abs. del Ag. Grueso = $0.4532 * 0.624 = 0.283m3$

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

Volumen Abs.
$$del\ Ag.\ Fino = 0.5468*0.629 = 0.344m3$$

Volumen Abs. $del\ Ag.\ Grueso = 0.4532*0.629 = 0.285m3$

C. Cemento Sol Portland Tipo-I

Volumen Abs. del Ag. Fino =
$$0.5468 * 0.636 = 0.348m3$$

Volumen Abs. del Ag. Grueso = $0.4532 * 0.636 = 0.289m3$

4.2.12 Pesos Secos de los Agregados

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

$$Peso\ Seco\ Ag.\ Fino = 0.341 * 2.66 * 1000 = 907.06m3$$

$$Peso\ Seco\ Ag.\ Grueso = 0.283 * 2.66 * 1000 = 752.78m3$$

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

$$Peso\ Seco\ Ag.\ Fino = 0.344 * 2.66 * 1000 = 915.04m3$$

$$Peso\ Seco\ Ag.\ Grueso = 0.285 * 2.66 * 1000 = 758.10m3$$

C. Cemento Sol Portland Tipo-I

$$Peso\ Seco\ Ag.\ Fino = 0.348 * 2.66 * 1000 = 925.68m3$$

$$Peso\ Seco\ Ag.\ Grueso = 0.289 * 2.66 * 1000 = 768.74m3$$

4.2.13 Correcciones por Humedad y Absorción.

Procedemos a realizar la corrección por humedad y absorción del agregado.

Debemos tener en cuenta que solo hemos obtenido los valores de diseño del agregado en estado seco.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

Peso H. del Ag. Fino =
$$907Kg/m3 * 1.014 = 920 Kg/m3$$

Peso H. del Ag. Grueso =
$$753Kg/m3 * 1.008 = 759Kg/m3$$

Determinamos la humedad superficial del agregado fino y grueso:

$$Agregado\ Fino = 1.37 - 1.58 = -0.21\%$$

$$Agregado\ Grueso\ = 0.8-1.00\ = -0.2\%$$

 $Agregado\ Fino = 907x(-0.0021) = -2Lt/m3$

 $Agreado\ Grueso = 753x(-0.002) = -1.5Lt/m3$

Aporte total de humedad de agregados = -3.5Lt/m3

Por lo tanto como el agregado no presenta aporte de humedad, tendremos que aumentar a la cantidad de agua obtenida inicialmente para tener el agua efectiva:

 $Agua\ efectiva = 216Lt/m3 + 3.5Lt/m3 = 220\ Lt/m3$

Entonces los pesos de los materiales corregidos serán los siguientes:

Cemento = 386 kg/m3

Agua efectiva = 220Lt/m3

Agregado Fino = 920 Kg/m3

Agregado Grueso = 759 Kg/m3

Para la determinación de la proporción en peso, todos los componentes de concreto se dividen entre la cantidad de cemento

Cemento = 386 / 386

Agregado Fino = 920/386

Agregado Grueso = 759/386

Dando como resultado:

1:2.38:1.97:0.57

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

Peso H. del Ag. Fino =
$$915Kg/m3 * 1.014 = 928 Kg/m3$$

Peso H. del Ag. Grueso =
$$758Kg/m3 * 1.008 = 764Kg/m3$$

Determinamos la humedad superficial del agregado fino y grueso:

$$Agregado\ Fino = 1.37 - 1.58 = -0.21\%$$

$$Agregado\ Grueso\ = 0.8 - 1.00\ = -0.2\%$$

$$Agregado\ Fino = 915x(-0.0021) = -2Lt/m3$$

$$Agreado\ Grueso = 758x(-0.002) = -1.5Lt/m3$$

Aporte total de humedad de agregados = -3.5Lt/m3

Por lo tanto como el agregado no presenta aporte de humedad, tendremos que aumentar a la cantidad de agua obtenida inicialmente para tener el agua efectiva:

$$Agua\ efectiva = 216Lt/m3 + 3.5Lt/m3 = 220\ Lt/m3$$

Entonces los pesos de los materiales corregidos serán los siguientes:

Cemento = 386 kg/m3

Agua efectiva = 220Lt/m3

Agregado Fino = 928 Kg/m3

Agregado Grueso =764 Kg/m3

Para la determinación de la proporción en peso, todos los componentes de concreto se dividen entre la cantidad de cemento

Cemento = 386 / 386

Agregado Fino = 928/386

Agregado Grueso =764/386

Dando como resultado:

1:2.40:1.98:0.57

C. Cemento Sol Portland Tipo-I

Peso H. del Ag. Fino = 926Kg/m3 * 1.014 = 939 Kg/m3

Peso H. del Ag. Grueso = 769Kg/m3 * 1.008 = 775Kg/m3

Determinamos la humedad superficial del agregado fino y grueso:

 $Agregado\ Fino = 1.37 - 1.58 = -0.21\%$

 $Agregado\ Grueso\ = 0.8 - 1.00\ = -0.2\%$

 $Agregado\ Fino = 926x(-0.0021) = -2Lt/m3$

 $Agreado\ Grueso = 769x(-0.002) = -1.5Lt/m3$

Aporte total de humedad de agregados = -3.5Lt/m3

Por lo tanto como el agregado no presenta aporte de humedad, tendremos que aumentar a la cantidad de agua obtenida inicialmente para tener el agua efectiva:

 $Agua\ efectiva = 216Lt/m3 + 3.5Lt/m3 = 220\ Lt/m3$

Entonces los pesos de los materiales corregidos serán los siguientes:

Cemento = 386 kg/m3

Agua efectiva = 220Lt/m3

Agregado Fino = 939 Kg/m3

Agregado Grueso =775 Kg/m3

Para la determinación de la proporción en peso, todos los componentes de concreto se dividen entre la cantidad de cemento

Cemento = 386/386

Agregado Fino = 939/386

Agregado Grueso = 775/386

Dando como resultado:

1:2.43:2.01:0.57

4.2.14 Presentación Final del Diseño

Este diseño se presenta en tandas de acuerdo a la capacidad de la mezcladora que se tiene en el laboratorio.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

COMPONENTE	kg/1m3	Diseño 30 Briq.	3 Briquetas	
Cemento	386	61.55	6.15	Kg.
Agua Efectiva	220	35.08	3.51	Lt.
Ag. Fino	920	146.69	14.67	Kg.
Ag. Grueso	759	121.02	12.10	Kg.

B. Cemento Yura Tipo HE-Alta Resistencia Inicial

COMPONENTE	kg/1m3	Diseño 30 Briq.	3 Briquetas	
Cemento	386	61.55	6.15	Kg.
Agua Efectiva	220	35.08	3.51	Lt.
Ag. Fino	928	147.97	14.80	Kg.
Ag. Grueso	764	121.82	12.18	Kg.

C. Cemento Sol Portland Tipo I

COMPONENTE	kg/1m3	Diseño 30 Briq.	3 Briquetas	
Cemento	386	61.55	6.15	Kg.
Agua Efectiva	220	35.08	3.51	Lt.
Ag. Fino	939	149.72	14.97	Kg.
Ag. Grueso	775	123.57	12.36	Kg.

CAPITULO V

ELABORACIÓN DE ESPECÍMENES CILINDRICOS DE CONCRETO

5.1 ELABORACIÓN DE ESPECÍMENES CILINDRICOS DE CONCRETO

5.1.1 Procedimiento.

Para el proceso de elaboración de los especímenes cilíndricos de concreto se ha considerado la Norma ASTM C31, caracterizado por el control de los factores que puedan implicar la aparición de variables no previstas hecho que puede llevar a un resultado final poco confiable.

- Se procedió al pesado del agregado y el cemento, así como la cantidad de agua necesaria para la elaboración de 3 testigos de concreto.
- Se procedió a la toma de medidas del diámetro del cilindro en forma de cruz para posteriormente obtener un promedio de este mismo.
- 3. Se colocan los moldes en una superficie nivelada, libre de vibraciones y posteriormente se humedece internamente las probetas cilíndricas con un material desmoldante.
- 4. Se coloca en la mezcladora los agregados y se agrega la cantidad de agua necesaria batiendo en un proceso de entre 3 y 4 minutos.
- Una vez que se obtiene la mezcla se procede a realizar la prueba de revenimiento con el cono de Abrams para verificar el slump bajo el cual se realizó el diseño.

- 6. La mezcla de concreto es colocado en una carretilla y batido nuevamente manualmente.
- 7. Con ayuda de un badilejo se agrega la mezcla a las probetas cilíndricas en 3 capas iguales teniendo cuidado con la segregación del material, posteriormente se da un varillado de 25 golpes de penetración uniformemente.
- 8. Se golpeó ligeramente los lados del molde de 10 a 15 veces con el mazo después de cada capa a fin de cerrar cualquier hoyo de inserción que se haya formado por la varilla.
- 9. Se enrasó de la parte superior para producir una superficie plana, pareja y a nivel.
- Se traslada cuidadosamente cada testigo de concreto fresco para su posterior desencofrado al día siguiente.

5.1.2 Calidad de los Moldes Cilíndricos

Lo primero que se establece en la norma ASTM C31 es que los moldes que se utilicen para la elaboración de los especímenes deben ser rígidos, no absorbentes, que cumplan con el requisito de estanqueidad que establece la norma ASTM C 470, entre otros.

Par nuestro caso se utilizó los moldes metálicos, verificando la perpendicularidad, con respecto al eje del molde. Todos los moldes cilíndricos para la elaboración de los especímenes de concreto que serían ensayadas a compresión se mantuvieron completamente limpios y

aceitados antes de proceder con los vaciados para facilitar el desmoldado de los especímenes.

5.1.3 Codificación de los Especímenes Cilíndricos de Concreto

Este proceso consistió en colocar una identificación a los especímenes cilíndricos de concreto, los cuales identificamos con el nombre del diseño, numero del especímen y fecha de elaboración como se muestra en el panel fotográfico.

El codificado se realizó una vez desmoldados (24 <u>+ 6</u> h) después de moldeados, teniendo en cuenta qué para concretos con tiempo de fraguado prolongado, los moldes no pueden ser retirados hasta 20 + 4h después del fraguado final.

5.1.4 Curado del Concreto

El curado de concreto consiste en mantener el contenido satisfactorio de humedad y temperatura en el concreto recién vaciado, de manera que pueda desarrollar las propiedades deseables, el sistema de curado que se utilizó en la investigación fue por la inmersión, para este sistema se emplearon las pozas de curado del laboratorio de Mecánica de Suelos de la Universidad Privada de Tacna, Variando la temperatura ambiente entre los 10° y 20° C.

5.1.5 Consideraciones Generales para elaboración de Especímenes

Consideraciones Generales

El procedimiento de curado de los especímenes está señalado en la Norma ASTMC 31.

Los moldes para preparar las probetas o las abrazaderas de los moldes que estén en contacto con el hormigón deben estar hechos de acero, hierro forjado o cualquier otro material no absorbente, no reactivo con el hormigón elaborado con cemento Portland u otros cementos hidráulicos. Los moldes deben conservar sus dimensiones y forma bajo cualquier condición de uso.

Pisón - Una barra de acero redonda, recta, con las dimensiones estipuladas en la Tabla 39, con al menos un extremo redondeado en forma de semiesfera del mismo diámetro que la barra.

REQUISITOS PARA EL PISÓN						
Dimensiones de la varilla ^A						
Diámetro del cilindro o ancho de la viga, pulg (mm)	Diámetro del pisón, pulg (mm)	Longitud del pisón, pulg (mm)				
< 6 (150)	3/8 (10)	12 (300)				
6 (150)	5/8 (16)	20 (500)				
9 (225)	5/8 (16)	26 (650)				

Fuente: ASTM C 31

Mazo - Se debe utilizar un mazo con cabeza de caucho o cuero que pese $1,25\pm0,50$ lb $(0,6\pm0,2$ kg).

El concreto alcanza el 70% de su resistencia especificada a los 7 días de su vaciado. La resistencia final del concreto depende en gran parte de las condiciones de humedad y de temperatura durante este periodo inicial. El 30% o más de la resistencia, puede perderse por un proceso de secado prematuro del concreto si la temperatura baja a 5°C o menos durante los primeros días, el agua utilizada en el mezclado del concreto cumple tres funciones las cuales son:

De hidratación: Permitiendo la formación de gel como sistema coherente capaz de proporcionar resistencia, en tiempo a la pasta.

De Catalización: El proceso de hidratación del cemento es un proceso húmedo. De manera que además de agua de hidratación se requiere otra adicional para que se realice el fenómeno de fragua.

De Trabajabilidad: Para que a mezcla tenga consistencia fluido-plástica necesaria para ser modelada con poco trabajo.

CAPITULO VI

RESULTADOS DE LA INVESTIGACIÓN

6.1 PRUEBAS DE RESISTENCIA (ENSAYOS) A COMPRESIÓN SIMPLE DE LOS ESPECÍMENES DE CONCRETO.

Los ensayos de resistencia a la compresión simple nos permiten determinar la resistencia a la compresión (f'c) de los especímenes cilíndricos de concreto, siendo la resistencia a la compresión la característica mecánica principal.

Este método consiste en la aplicación de una carga de compresión a los cilindros moldeados, y se mide fracturando los especímenes cilíndricos de concreto en una máquina de ensayos de compresión, en donde la resistencia a la compresión se calcula a partir de la carga de ruptura axial dividida por el área de la sección que resiste a la carga cumpliendo con la norma ASTM C39 "Método estándar de prueba de resistencia a la compresión de probetas cilíndricas de concreto" y se reporta en unidades de libra fuerza por pulgada cuadrada (psi).

Los resultados de las pruebas de resistencia a la compresión se usan fundamentalmente para determinar que la mezcla de concreto suministrada cumpla con los requerimientos de la resistencia especificada (f'c.) Los resultados obtenidos dependerán de las dimensiones de los especímenes, la dosificación, procedimiento de mezclado, moldeo, fabricación y las condiciones de curado, debiendo tener mucho cuidado en la interpretación del significado de los resultados.

El procedimiento empleado se desarrolló de la siguiente manera:

- 1º Se seleccionó los especímenes cilíndricos considerando las edades, el tipo de cemento y método, ya en el laboratorio se midió el diámetro de los cilindros en dos sitios en ángulos rectos entre sí a media altura para promediar y calcular el área de la sección siendo regular y uniforme las secciones; se verifico además si existían desviaciones con respecto a la perpendicularidad del eje cilíndrico estando todos conformes.
- 2º Con el fin de conseguir una distribución uniforme de la carga se cabeceó con una almohadilla de neopreno.
- 3º Se centraron los especímenes cilíndricos en la máquina de ensayo de compresión y se cargaron hasta completar la ruptura.
- 4º La resistencia del concreto se calcula dividiendo la máxima carga soportada por la probeta para producir la fractura entre el área promedio de la sección.
- 5º Se anotó la fecha de la aprueba, la identificación del especímen de concreto, el diámetro del cilindro, la edad de los cilindros de prueba, la máxima carga aplicada, el tipo de fractura.

Es necesario mencionar que las pruebas se realizaron en el laboratorio de mecánica de Suelos de la facultad de Ingeniería de la Universidad Privada de Tacna, bajo la supervisión del técnico responsable quien manipulo la operación de las máquinas.

6.2 RESULTADOS DE LAS PRUEBAS (ENSAYOS) A COMPRESIÓN SIMPLE DE LOS ESPECÍMENES DE CONCRETO

TESIS: DIFERENCIA EN LA RESISTENCIA DE LOS CONCRETOS POR EFECTO DE LOS TIPOS DE CEMENTO COMERCIALIZADOS EN LA CIUDAD DE TACNA DE TACNA.2016

TIPO DE AGREGADO:Piedra RedondeadaFECHA DE VACIADO:07/07/2016TIPO DE CEMENTO:Cemento Sol Portland Tipo-IRESITENCIA DE DISEÑO:210 kg/cm2

BACHILLER: Rodrigo Alexander Vicente Mercado

TABLA N° 40 RESULTADOS DEL ENSAYO A COMPRESIÓN SIMPLE MÉTODO DE DISEÑO TEÓRICO: ACI-COMITÉ 211, CEMENTO SOL PORTLAND TIPO- I

ITEM	EDAD	FECHA	DIAMETRO cm	AREA cm2	FUERZA APLICADA kgf	f'c	%	f'c PROMEDIO	DESV. EST.	DISPERSION
01	7	14/07/2016	15.30	183.85	36896	200.68	95.56			
02	7	14/07/2016	15.35	185.06	37268	201.39	95.90			
03	7	14/07/2016	14.95	175.54	35526	202.38	96.37			
04	7	14/07/2016	15.15	180.27	35426	196.52	93.58			
05	7	14/07/2016	15.30	183.85	36256	197.20	93.90	199.42	2.64	1%
06	7	14/07/2016	15.00	176.71	35265	199.56	95.03	199.42	2.04	1 %
07	7	14/07/2016	15.30	183.85	36854	200.45	95.45			
08	7	14/07/2016	15.05	177.89	34526	194.08	92.42			
09	7	14/07/2016	15.20	181.46	36585	201.62	96.01			
10	7	14/07/2016	14.95	175.54	35164	200.32	95.39			
11	14	21/07/2016	15.00	176.71	48960	277.06	131.93		6.09	2%
12	14	21/07/2016	14.95	175.54	49251	280.57	133.61			
13	14	21/07/2016	15.10	179.08	51230	286.08	136.23			
14	14	21/07/2016	15.20	181.46	51236	282.36	134.46			
15	14	21/07/2016	15.10	179.08	53220	297.19	141.52	282.82		
16	14	21/07/2016	14.95	175.54	49856	284.02	135.25	282.82		
17	14	21/07/2016	15.00	176.71	50293	284.60	135.52			
18	14	21/07/2016	15.10	179.08	49312	275.37	131.13			
19	14	21/07/2016	15.30	183.85	51234	278.67	132.70			
20	14	21/07/2016	15.05	177.89	50213	282.26	134.41			
21	28	04/08/2016	15.30	183.85	64278	349.61	166.48			
22	28	04/08/2016	15.30	183.85	65232	354.80	168.95			
23	28	04/08/2016	15.25	182.65	65125	356.55	169.78			
24	28	04/08/2016	15.10	179.08	64231	358.67	170.80			
25	28	04/08/2016	15.30	183.85	64253	349.48	166.42	256 67	6.89	2%
26	28	04/08/2016	15.10	179.08	65892	367.95	175.21	356.67	0.89	2%
27	28	04/08/2016	15.30	183.85	63897	347.54	165.50			
28	28	04/08/2016	15.15	180.27	65123	361.26	172.03			
29	28	04/08/2016	15.30	183.85	67256	365.81	174.20			
30	28	04/08/2016	15.30	183.85	65262	354.97	169.03			

TESIS: DIFERENCIA EN LA RESISTENCIA DE LOS CONCRETOS POR EFECTO DE LOS TIPOS DE CEMENTO COMERCIALIZADOS EN LA CIUDAD DE TACNA DE TACNA.2016

TIPO DE AGREGADO: Piedra Redondeada

FECHA DE VACIADO:

08/07/2016

TIPO DE CEMENTO: Cemento Yura HE – Alta Resistencia Inicial

RESITENCIA DE DISEÑO:

210 kg/cm2

BACHILLER: Rodrigo Alexander Vicente Mercado

PAGINA:

TABLA N° 41 RESULTADOS DEL ENSAYO A COMPRESIÓN SIMPLE MÉTODO DE DISEÑO TEÓRICO: ACI-COMITÉ 211, CEMENTO YURA TIPO HE-ALTA RESISTENCIA INICAL

ITEM	EDAD	FECHA	DIAMETRO cm	AREA cm2	FUERZA APLICADA kgf	f'c	%	f'c PROMEDIO	DESV. EST.	DISPERSION
01	7	15/07/2016	15.00	176.71	33221	187.99	89.52			
02	7	15/07/2016	15.05	177.89	34523	194.06	92.41			
03	7	15/07/2016	14.95	175.54	34652	197.40	94.00			
04	7	15/07/2016	15.00	176.71	34215	193.62	92.20			
05	7	15/07/2016	15.10	179.08	35262	196.91	93.77	191.29	4.20	2%
06	7	15/07/2016	15.05	177.89	33120	186.18	88.66	191.29	4.20	270
07	7	15/07/2016	14.95	175.54	33898	193.11	91.96			
08	7	15/07/2016	15.20	181.46	34251	188.75	89.88			
09	7	15/07/2016	15.10	179.08	33587	187.55	89.31			
10	7	15/07/2016	15.05	177.89	33325	187.33	89.20			
11	14	22/07/2016	15.00	176.71	51236	289.94	138.06			
12	14	22/07/2016	15.00	176.71	49536	280.32	133.48		7.84	3%
13	14	22/07/2016	15.05	177.89	50650	284.72	135.58			
14	14	22/07/2016	15.10	179.08	51030	284.96	135.69			
15	14	22/07/2016	15.20	181.46	52157	287.43	136.87	285.55		
16	14	22/07/2016	15.20	181.46	53297	293.71	139.86	285.55		
17	14	22/07/2016	15.10	179.08	53256	297.39	141.61			
18	14	22/07/2016	15.05	177.89	51283	288.28	137.27			
19	14	22/07/2016	15.20	181.46	49001	270.04	128.59			
20	14	22/07/2016	15.30	183.85	51236	278.68	132.70			
21	28	05/08/2016	14.90	174.37	63256	362.78	172.75			
22	28	05/08/2016	15.00	176.71	65231	369.13	175.78			
23	28	05/08/2016	15.10	179.08	64231	358.67	170.80			
24	28	05/08/2016	15.05	177.89	64123	360.45	171.65			
25	28	05/08/2016	15.00	176.71	62452	353.41	168.29	360.14	9.65	3%
26	28	05/08/2016	14.95	175.54	60989	347.44	165.45	360.14	9.03	3%
27	28	05/08/2016	15.20	181.46	62435	344.07	163.84			
28	28	05/08/2016	15.00	176.71	64232	363.48	173.09			
29	28	05/08/2016	15.05	177.89	65231	366.68	174.61			
30	28	05/08/2016	15.00	176.71	66320	375.29	178.71			

		TESIS:	DIFERENCIA EN LA RESISTE	ENCIA DE LOS CONCRETOS POI	R EFECTO DE L	OS TIPOS	DE CEMENTO CO)MERCIALIZAI	OOS EN LA CIU	DAD DE TAC	NA DE TACN	A,2016
TIPO DI	TIPO DE AGREGADO:		Piedra Redondeada						FECHA DE VA	CIADO:		11/07/2016
TIPO DI	E CEMENTO	:	Cemento Portland Puzolánico Y	ura IP–Alta Durabilidad					RESITENCIA D	E DISEÑO:		210 kg/cm2
BACHIL	LER:		Rodrigo Alexander Vicente Merc	ado					PAGINA:			

TABLA N° 42 RESULTADOS DEL ENSAYO A COMPRESIÓN SIMPLE MÉTODO DE DISEÑO TEÓRICO: ACI-COMITÉ 211, CEMENTO PORTLAND PUZOLÁNICO YURA IP- ALTA DURABILIDAD

ITEM	EDAD	FECHA	DIAMETRO cm	AREA cm2	FUERZA APLICADA kgf	fc	%	f'c PROMEDIO	DESV. EST.	DISPERSION
01	7	18/07/2016	15.10	179.08	31520	176.01	83.82			
02	7	18/07/2016	15.10	179.08	32770	182.99	87.14			
03	7	18/07/2016	15.00	176.71	31256	176.87	84.23			
04	7	18/07/2016	15.05	177.89	33290	187.13	89.11			
05	7	18/07/2016	14.95	175.54	33256	189.45	90.21	170.64	0.72	50/
06	7	18/07/2016	15.10	179.08	32754	182.90	87.10	178.64	9.73	5%
07	7	18/07/2016	15.20	181.46	30252	166.72	79.39			
08	7	18/07/2016	15.10	179.08	29520	164.84	78.50			
09	7	18/07/2016	15.05	177.89	29870	167.91	79.96			
10	7	18/07/2016	15.00	176.71	33860	191.61	91.24			
11	14	25/07/2016	15.00	176.71	35893	203.11	96.72			
12	14	25/07/2016	15.05	177.89	36256	203.81	97.05			
13	14	25/07/2016	15.10	179.08	36480	203.71	97.00			
14	14	25/07/2016	15.20	181.46	35866	197.65	94.12			
15	14	25/07/2016	15.05	177.89	38758	217.87	103.75	200.20	0.07	40/
16	14	25/07/2016	15.10	179.08	36840	205.72	97.96	209.38	8.87	4%
17	14	25/07/2016	15.10	179.08	39360	219.79	104.66			
18	14	25/07/2016	15.00	176.71	38350	217.02	103.34			
19	14	25/07/2016	15.00	176.71	39310	222.45	105.93			
20	14	25/07/2016	15.30	183.85	37260	202.66	96.51			
21	28	08/08/2016	15.00	176.71	44362	251.04	119.54			
22	28	08/08/2016	15.05	177.89	43350	243.68	116.04			
23	28	08/08/2016	15.00	176.71	44760	253.29	120.61			
24	28	08/08/2016	15.10	179.08	43820	244.70	116.52			
25	28	08/08/2016	15.05	177.89	48810	274.38	130.66	252.00	10.20	40/
26	28	08/08/2016	15.00	176.71	44472	251.66	119.84	252.98	10.20	4%
27	28	08/08/2016	15.10	179.08	46570	260.05	123.83			ĺ
28	28	08/08/2016	15.20	181.46	45236	249.29	118.71			ĺ
29	28	08/08/2016	15.00	176.71	42368	239.75	114.17			ĺ
30	28	08/08/2016	15.05	177.89	46593	261.91	124.72			

	TESIS:	DIFERENCIA EN LA	RESISTENCIA	DE LOS CONCRETOS POR	EFECTO DE LOS	S TIPOS	DE CEMENTO COI	MERCIALIZADO	OS EN LA CIUI	DAD DE TACI	NA DE TACNA	A,2016
TIPO DE AGREGADO):	Piedra Chancada]	FECHA DE VA	CIADO:		12/07/2016
TIPO DE CEMENTO:		Cemento Sol Portland	Tipo–I]	RESITENCIA D	E DISEÑO:		210 kg/cm2
BACHILLER:		Rodrigo Alexander Vic	ente Mercado]	PAGINA:			

TABLA N° 43 RESULTADOS DEL ENSAYO A COMPRESIÓN SIMPLE MÉTODO DE DISEÑO TEÓRICO: WALKER, CEMENTO SOL PORTLAND TIPO-I

ITEM	EDAD	FECHA	DIAMETRO cm	AREA cm2	FUERZA APLICADA kgf	f'c	%	f'c PROMEDIO	DESV. EST.	DISPERSION
01	7	19/07/2016	14.95	175.54	42568	242.50	115.48			
02	7	19/07/2016	15.00	176.71	43896	248.40	118.29			
03	7	19/07/2016	15.10	179.08	42123	235.22	112.01			
04	7	19/07/2016	15.00	176.71	43859	248.19	118.19			
05	7	19/07/2016	15.00	176.71	43652	247.02	117.63	240.21	7.00	20/
06	7	19/07/2016	15.20	181.46	43212	238.14	113.40	240.21	7.09	3%
07	7	19/07/2016	15.30	183.85	41536	225.92	107.58			
08	7	19/07/2016	15.05	177.89	42358	238.11	113.38			
09	7	19/07/2016	15.05	177.89	43261	243.18	115.80			
10	7	19/07/2016	15.10	179.08	42158	235.42	112.10			
11	14	26/07/2016	15.20	181.46	65600	361.52	172.15			
12	14	26/07/2016	15.20	181.46	64270	354.19	168.66			
13	14	26/07/2016	15.10	179.08	65110	363.58	173.13			
14	14	26/07/2016	15.05	177.89	66123	371.70	177.00			
15	14	26/07/2016	14.95	175.54	66380	378.15	180.07	267.27	0.27	20/
16	14	26/07/2016	15.00	176.71	67121	379.83	180.87	367.27	8.37	2%
17	14	26/07/2016	15.10	179.08	66235	369.87	176.13			
18	14	26/07/2016	15.05	177.89	64240	361.11	171.96			
19	14	26/07/2016	15.20	181.46	65400	360.41	171.63			
20	14	26/07/2016	15.20	181.46	67560	372.32	177.29			
21	28	09/08/2016	15.00	176.71	72516	410.36	195.41			
22	28	09/08/2016	15.10	179.08	73080	408.09	194.33			
23	28	09/08/2016	15.30	183.85	72880	396.40	188.76			
24	28	09/08/2016	15.10	179.08	75910	423.89	201.85			
25	28	09/08/2016	15.20	181.46	74252	409.20	194.86	400.10	9.07	20/
26	28	09/08/2016	15.30	183.85	75231	409.19	194.85	408.10	8.97	2%
27	28	09/08/2016	15.15	180.27	72780	403.74	192.25			
28	28	09/08/2016	15.00	176.71	72010	407.49	194.04			
29	28	09/08/2016	15.35	185.06	72910	393.99	187.61			
30	28	09/08/2016	15.00	176.71	73980	418.64	199.35			

	TESIS:	DIFERENCIA EN L	A RESISTENC	IA DE LOS CONCRETOS I	OR EFECTO	DE LOS	TIPOS DE CEMEN	TO COMERCIA	ALIZADOS EN	LA CIUDAD	DE TACNA	DE TACNA,2016
TIPO DE AGREGAD	0.	Piedra Chancada							FECHA DE VA	ACIADO:		13/07/2016
TIPO DE CEMENTO:		Cemento Yura HE –	Alta Resistencia	a Inicial					RESITENCIA I			210 kg/cm2
BACHILLER:		Rodrigo Alexander Vi	cente Mercado						PAGINA:			J

TABLA N° 44 RESULTADOS DEL ENSAYO A COMPRESIÓN SIMPLE MÉTODO DE DISEÑO TEÓRICO: WALKER, CEMENTO YURA TIPO HE- ALTA RESISTENCIA INICIAL

	1	1		ĺ					ĺ	
ITEM	EDAD	FECHA	DIAMETRO cm	AREA cm2	FUERZA APLICADA kgf	f'c	%	f'c PROMEDIO	DESV. EST.	DISPERSION
01	7	20/07/2016	15.00	176.71	43270	244.86	116.60			
02	7	20/07/2016	15.10	179.08	44212	246.89	117.56			
03	7	20/07/2016	15.00	176.71	42569	240.89	114.71			
04	7	20/07/2016	15.15	180.27	44320	245.86	117.08			
05	7	20/07/2016	15.20	181.46	42365	233.47	111.18	238.75	6.99	3%
06	7	20/07/2016	15.05	177.89	41254	231.90	110.43	238.73	0.99	370
07	7	20/07/2016	15.10	179.08	40236	224.68	106.99			
08	7	20/07/2016	15.20	181.46	43256	238.38	113.51			
09	7	20/07/2016	15.00	176.71	42222	238.93	113.78			
10	7	20/07/2016	15.10	179.08	43265	241.60	115.05			
11	14	27/07/2016	15.00	176.71	68952	390.19	185.80			
12	14	27/07/2016	15.00	176.71	67513	382.05	181.93			
13	14	27/07/2016	15.05	177.89	66001	371.01	176.67	1		
14	14	27/07/2016	15.20	181.46	66444	366.17	174.37			
15	14	27/07/2016	14.95	175.54	65986	375.91	179.00	272.11	0.70	20/
16	14	27/07/2016	15.30	183.85	66235	360.26	171.55	373.11	9.78	3%
17	14	27/07/2016	15.25	182.65	65395	358.03	170.49			
18	14	27/07/2016	15.00	176.71	66123	374.18	178.18			
19	14	27/07/2016	15.10	179.08	67845	378.86	180.41			
20	14	27/07/2016	15.00	176.71	66177	374.49	178.33	1		
21	28	10/08/2016	15.20	181.46	74231	409.08	194.80			
22	28	10/08/2016	15.10	179.08	75333	420.67	200.32			
23	28	10/08/2016	15.05	177.89	75213	422.80	201.33			
24	28	10/08/2016	15.10	179.08	75936	424.04	201.92			
25	28	10/08/2016	15.00	176.71	76231	431.38	205.42	125.05	7.01	20/
26	28	10/08/2016	15.05	177.89	77652	436.51	207.86	425.95	7.91	2%
27	28	10/08/2016	15.20	181.46	77521	427.21	203.43	1		
28	28	10/08/2016	15.00	176.71	76523	433.03	206.21	1		
29	28	10/08/2016	15.05	177.89	75239	422.94	201.40	1		
30	28	10/08/2016	15.00	176.71	76312	431.84	205.64	1		

		TESIS:	DIFERENCIA EN LA	RESISTENCIA	DE LOS CONCRETOS POR	EFECTO DE LOS TIPOS	S DE CEMENTO CO	OMERCIALIZAD	ADOS EN LA CIUDAD DE TACNA DE TACNA,2016				
TIPO D	TIPO DE AGREGADO:		Piedra Chancada						FECHA DE VA	CIADO:		14/07/2016	
TIPO D	E CEMENTO:		Cemento Portland Puz	olánico Yura IP	Alta Durabilidad				RESITENCIA D	E DISEÑO:		210 kg/cm2	
BACHIL	LLER:		Rodrigo Alexander Vic	ente Mercado					PAGINA:				

TABLA N° 45 RESULTADOS DEL ENSAYO A COMPRESIÓN SIMPLE MÉTODO DE DISEÑO TEÓRICO: WALKER, CEMENTO PORTLAND PUZOLÁNICO YURA IP- ALTA DURABILIDAD

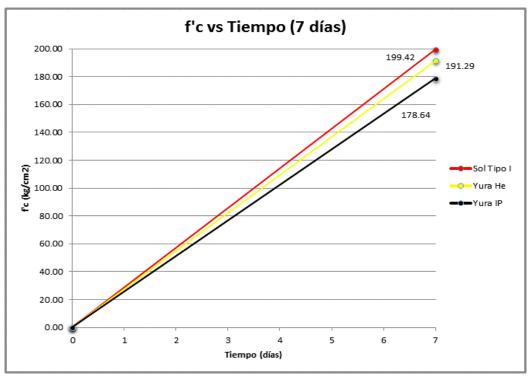
ITEM	EDAD	FECHA	DIAMETRO cm	AREA cm2	FUERZA APLICADA kgf	f'c	%	f'c PROMEDIO	DESV. EST.	DISPERSION
01	7	21/07/2016	15.00	176.71	33596	190.11	90.53			
02	7	21/07/2016	15.10	179.08	34893	194.85	92.78	1		
03	7	21/07/2016	15.15	180.27	33440	185.50	88.33	1		
04	7	21/07/2016	15.05	177.89	35112	197.38	93.99	1		
05	7	21/07/2016	15.00	176.71	34852	197.22	93.92			
06	7	21/07/2016	15.20	181.46	35262	194.33	92.54	190.07	6.48	3%
07	7	21/07/2016	15.05	177.89	34125	191.83	91.35			
08	7	21/07/2016	15.20	181.46	33399	184.06	87.65			
09	7	21/07/2016	15.10	179.08	33740	188.41	89.72			
10	7	21/07/2016	15.20	181.46	32123	177.03	84.30			
11	14	28/07/2016	15.30	183.85	41231	224.26	106.79			
12	14	28/07/2016	15.10	179.08	38780	216.55	103.12	1		
13	14	28/07/2016	15.05	177.89	40460	227.44	108.30	1		
14	14	28/07/2016	15.00	176.71	38796	219.54	104.54			
15	14	28/07/2016	15.15	180.27	38563	213.92	101.87	220.00	6.40	20/
16	14	28/07/2016	14.95	175.54	39421	224.57	106.94	220.99	6.48	3%
17	14	28/07/2016	14.90	174.37	37855	217.10	103.38			
18	14	28/07/2016	15.10	179.08	38996	217.76	103.69			
19	14	28/07/2016	15.10	179.08	39330	219.62	104.58			
20	14	28/07/2016	15.05	177.89	40768	229.17	109.13			
21	28	11/08/2016	15.20	181.46	47631	262.49	125.00			
22	28	11/08/2016	14.95	175.54	48523	276.42	131.63			
23	28	11/08/2016	15.05	177.89	47035	264.40	125.90			
24	28	11/08/2016	15.00	176.71	49930	282.55	134.55			
25	28	11/08/2016	15.30	183.85	48523	263.92	125.68	271.01	7.96	20/
26	28	11/08/2016	15.20	181.46	47961	264.31	125.86	271.81	7.86	3%
27	28	11/08/2016	15.05	177.89	49523	278.38	132.56			
28	28	11/08/2016	15.00	176.71	47885	270.97	129.04			
29	28	11/08/2016	15.00	176.71	49935	282.57	134.56			
30	28	11/08/2016	15.10	179.08	48720	272.06	129.55			

TABLA Nº 46 RESUMEN DEL ENSAYO A COMPRESION SIMPLE MÈTODO DE DISEÑO TEÒRICO: ACI COMITÉ 211

EDAD (DÍAS)	SOL PORTLAND TIPO- I	YURA TIPO HE-ALTA RESISTENCIA INICAL	PORTLAND PUZOLÁNICO YURA IP- ALTA DURABILIDAD			
07	199.42 kg/cm2	191.29 kg/cm2	178.64 kg/cm2			
14	282.82 kg/cm2	285.55 kg/cm2	209.38 kg/cm2			
28	356.67 kg/cm2	360.14 kg/cm2	252.98 kg/cm2			

TABLA Nº 47 RESUMEN DEL ENSAYO A COMPRESION SIMPLE MÈTODO DE DISEÑO TEÒRICO: WALKER

	SOL PORTLAND TIPO- I	YURA TIPO HE-ALTA RESISTENCIA INICAL	PORTLAND PUZOLÁNICO YURA IP- ALTA DURABILIDAD
07	240.21 kg/cm2	238.75 kg/cm2	190.07 kg/cm2
14	367.27 kg/cm2	373.11 kg/cm2	220.99 kg/cm2
28	408.10 kg/cm2	425.95 kg/cm2	271.81 kg/cm2


6.3 ANÁLISIS E INTERPRETACIÓN DE LOS RESULTADOS

6.3.1 Resistencia a la Compresión vs Tiempo a los 7, 14 y 28 días

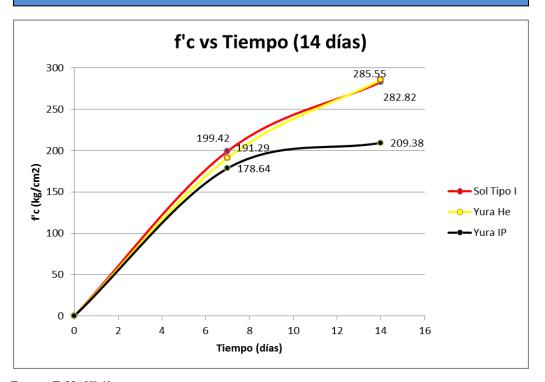
Según Diseño por Método ACI-Comité 211, Agregado

Redondeado

GRAFICO N° 1 CURVA DE RESISTENCIA A LA COMPRESIÓN VS. TIEMPO A LA EDAD DE 7 DÍAS SEGÚN MÉTODO ACI-COMITÉ 211 AGREGADO REDONDEADO

Fuente: Tabla Nº 40

Análisis e Interpretación


Considerando los datos de la Tabla Nº 40 y el Gráfico Nº 1, se comprueba lo siguiente:

Que a la edad de 7 días el concreto utilizando cemento Sol Portland Tipo-I alcanza una resistencia de 199.42 kg/cm2, el concreto utilizando cemento

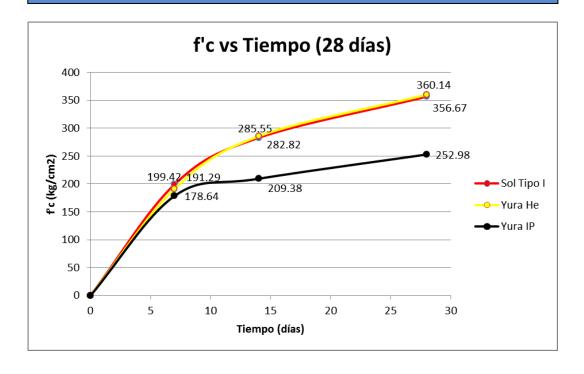
Yura Tipo HE–Alta Resistencia Inicial alcanza una resistencia de 191.29kg/cm2 y el concreto utilizando cemento Portland Puzolánico Yura IP-Alta Durabilidad una resistencia de 178.64 kg/cm2, cumpliendo con la resistencia mínima del 70% para un diseño de mezcla 210f°c.

Se concluye que el concreto elaborado con cemento Sol Portland Tipo-I alcanza un 3.86% de resistencia mayor que el concreto elaborado con cemento Yura Tipo HE–Alta Resistencia Inicial, y que este a su vez alcanza un 6.03% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad.

GRAFICO N° 2 CURVA DE RESISTENCIA A LA COMPRESIÓN VS. TIEMPO A LA EDAD DE 14 DÍAS SEGÚN MÉTODO ACI-COMITÉ 211 AGREGADO REDONDEADO

Fuente: Tabla Nº 41

Análisis e Interpretación


Considerando los datos obtenidos de la Tabla Nº 41 y Gráfico Nº 02, se comprueba lo siguiente:

Que a la edad de 14 días el concreto utilizando cemento Sol Portland Tipo-I alcanza una resistencia de 282.82 kg/cm2, el concreto utilizando cemento Yura Tipo HE – Alta Resistencia Inicial alcanza una resistencia de 285.55kg/cm2 y el concreto utilizando cemento Portland Puzolánico Yura IP-Alta Durabilidad una resistencia de 209.38 kg/cm2, cumpliendo con la resistencia mínima del 90% para un diseño de mezcla 210f°c.

Se concluye que el concreto elaborado con cemento Sol Portland Tipo-I obtiene una resistencia inferior y es superada en un 1.3% a la resistencia del concreto elaborado con cemento Yura Tipo HE–Alta Resistencia Inicial, y que este a su vez alcanza un 36.28% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad.

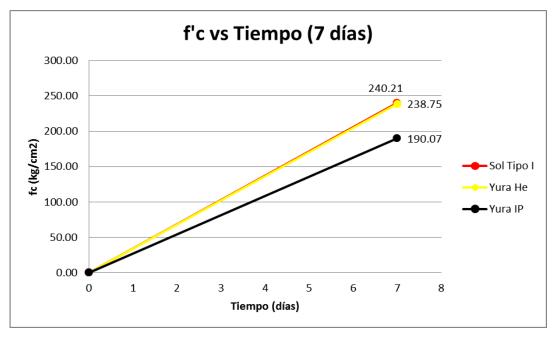
También se aprecia una desaceleración en la ganancia de resistencia.

GRAFICO N° 3 CURVA DE RESISTENCIA A LA COMPRESIÓN VS. TIEMPO A LA EDAD DE 28 DÍAS SEGÚN MÉTODO ACI-COMITÉ 211 AGREGADO REDONDEADO

Fuente: Tabla Nº 42

Análisis e Interpretación

Considerando los datos obtenidos en la Tabla Nº 42 y el Gráfico Nº 3, se comprueba lo siguiente:


Que a la edad de 28 días el concreto utilizando cemento Sol Portland Tipo-I alcanza una resistencia de 356.67 kg/cm2, el concreto utilizando cemento Yura Tipo HE— Alta Resistencia Inicial alcanza una resistencia de 360.14kg/cm2 y el concreto utilizando cemento Portland Puzolánico Yura IP-Alta Durabilidad una resistencia de 252.98 kg/cm2, superando la resistencia mínima del 99% para un diseño de mezcla 210f°c.

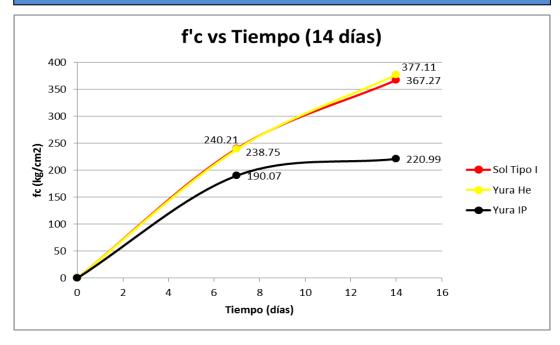
Se concluye que el concreto elaborado con cemento Sol Portland Tipo-I obtiene una resistencia inferior y es superada en un 1.66% a la resistencia del concreto elaborado con cemento Yura Tipo HE – Alta Resistencia Inicial, y que este a su vez alcanza un 49.37% de mayor de resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad.

También se aprecia que se mantiene la tendencia en la desaceleración de la ganancia de resistencia.

6.3.2 Resistencia a la Compresión vs Tiempo a los 7, 14 y 28 días Según Diseño por el Método Walker, Agregado Angular

Fuente: Tabla Nº 43

Análisis e Interpretación


Considerando los datos obtenidos en la Tabla Nº 43 y Grafico Nº 04, se comprueba lo siguiente:

Que a la edad de 7 días el concreto utilizando cemento Sol Portland Tipo-I alcanza una resistencia de 240.21 kg/cm2, el concreto utilizando cemento Yura Tipo HE—Alta Resistencia Inicial alcanza una resistencia de 238.75kg/cm2 y el concreto utilizando cemento Portland Puzolánico Yura IP-Alta Durabilidad una resistencia de 190.07 kg/cm2, cumpliendo con la resistencia mínima del 70% de resistencia del concreto (f'c) para un diseño de mezcla 210f'c.

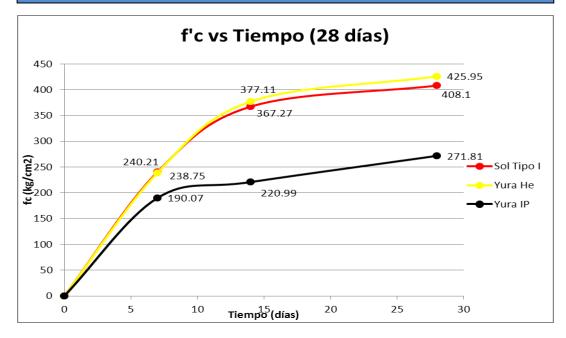
Se concluye que el concreto elaborado con cemento Sol Portland Tipo-I alcanza un 0.69% de resistencia mayor que el concreto elaborado con cemento Yura Tipo HE–Alta Resistencia Inicial, y que este a su vez alcanza un 23.19% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad.

En comparación a los resultados del Grafico N° 01 este diseño de mezcla alcanza mayor resistencia a la misma edad por el tipo de agregado grueso utilizado y por la proporción mayor de agregado fino.

GRAFICO N° 5 CURVA DE RESISTENCIA A LA COMPRESIÓN VS. TIEMPO A LA EDAD DE 14 DÍAS SEGÚN MÉTODO WALKER AGREGADO ANGULAR

Fuente: Tabla Nº 44

Análisis e Interpretación


Considerando los datos obtenidos en la Tabla Nº 44 y el Gráfico Nº 5, se comprueba lo siguiente:

Que a la edad de 14 días el concreto utilizando cemento Sol Portland Tipo-I alcanza una resistencia de 367.27 kg/cm2, el concreto utilizando cemento Yura Tipo HE— Alta Resistencia Inicial alcanza una resistencia de 377.11kg/cm2 y el concreto utilizando cemento Portland Puzolánico Yura IP-Alta Durabilidad una resistencia de 220.99kg/cm2, cumpliendo con la resistencia mínima del 90% para un diseño de mezcla 210f°c

Se concluye que el concreto elaborado con cemento Sol Portland Tipo-I obtiene una resistencia inferior y es superada en un 4.69% a la resistencia del concreto elaborado con cemento Yura Tipo HE–Alta Resistencia Inicial, y que este a su vez alcanza un 69.65% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta durabilidad.

También se aprecia una desaceleración en la ganancia de resistencia; y, en comparación a los resultados del Gráfico N° 2 este diseño de mezcla alcanza mayor resistencia a la misma edad por el tipo de agregado grueso utilizado y por la proporción mayor de agregado fino.

GRAFICO N° 6 CURVA DE RESISTENCIA A LA COMPRESIÓN VS. TIEMPO A LA EDAD DE 28 DÍAS SEGÚN MÉTODO WALKER AGREGADO ANGULAR

Fuente: Tabla Nº 45

Análisis e Interpretación

Considerando los datos obtenidos en la Tabla Nº 45 y Gráfico Nº 6, se comprueba lo siguiente:

Que a la edad de 28 días el concreto utilizando cemento Sol Portland Tipo-I alcanza una resistencia de 408.1 kg/cm2, el concreto utilizando cemento Yura Tipo HE— Alta Resistencia Inicial alcanza una resistencia de 425.95kg/cm2 y el concreto utilizando cemento Portland Puzolánico Yura IP-Alta Durabilidad una resistencia de 271.81kg/cm2, superando la resistencia mínima del 99%, para un diseño de mezcla 210f°c.

Se concluye que el concreto elaborado con cemento Sol Portland Tipo-I obtiene una resistencia inferior y es superada en un 8.5% a la resistencia del concreto elaborado con cemento Yura Tipo HE–Alta Resistencia Inicial, y que este a su vez alcanza un 64.9% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad.

También se aprecia que se mantiene la tendencia en la desaceleración de la ganancia de resistencia, y en comparación con el Gráfico N° 3 este diseño de mezcla alcanza mayor resistencia a la misma edad por el tipo de agregado grueso utilizado y por la proporción mayor de agregado fino.

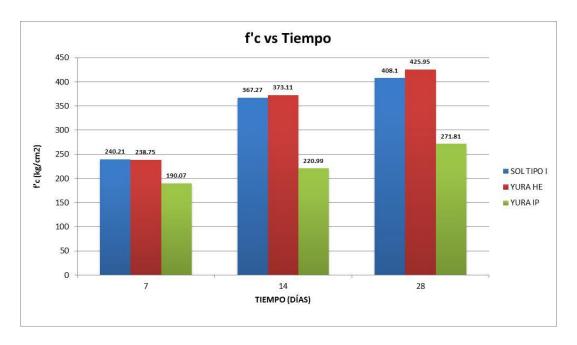
6.3.3 Resumen de Resistencia a la Compresión vs Tiempo a los 7, 14 y 28 días Según Diseño por el Método ACI -Comité 211, Agregado Redondeado

GRAFICO N° 7 RESUMEN DE RESISTENCIA A LA COMPRESIÓN VS TIEMPO A LA EDAD DE 7, 14, 28 DÍAS SEGÚN MÉTODO ACI COMITÉ 211 AGREGADO REDONDEADO

Fuente: Tabla Nº 46

Análisis e Interpretación

Considerando los datos obtenidos en la Tabla Nº 46 y el Gráfico Nº 7, se comprueba lo siguiente:


Que a la edad de 7 días el Sol Portland Tipo-I obtiene una mayor resistencia inicial por presentar en su composición química mayor cantidad de Aluminato Tricalcico (C3A) que el cemento Portland Puzolánico Yura IP-Alta Durabilidad e inclusive mayor al cemento Yura Tipo HE-Alta Resistencia Inicial.

A los 14 días el cemento Yura Tipo HE–Alta Resistencia Inicial supera al cemento Sol Portland Tipo –I por que presenta en su composición química una mayor cantidad de Silicato Tricalcico (C3S) otorgándole una mayor resistencia a la compresión que se mantiene hasta los 28 días.

En conclusión, la proporción de los silicatos que se encuentran en cada tipo de cemento según su origen y fabricación determinan la resistencia mecánica en el transcurso de los días.

6.3.4 Resumen de Resistencia a la Compresión vs Tiempo a los 7, 14 y 28 días Según Diseño por el Método Walker, Agregado Angular

Fuente: Tabla Nº 47

Análisis e Interpretación

Considerando los datos obtenidos en la Tabla Nº 47 y el Gráfico Nº 8, se comprueba lo siguiente:

Que a la edad de 7 días el Sol Portland Tipo-I obtiene una mayor resistencia inicial por presentar en su composición química mayor cantidad de Aluminato Tricalcico (C3A) que el cemento Portland Puzolánico Yura IP-Alta Durabilidad e inclusive mayor al cemento Yura Tipo HE-Alta Resistencia Inicial, ocurriendo lo mismo que en el análisis del grafico del grafico Na7 indistintamente del tipo de agregado.

A los 14 días el cemento Yura Tipo HE–Alta Resistencia Inicial supera al cemento Sol Portland Tipo –I por que presenta en su composición química una mayor cantidad de Silicato Tricalcico (C3S) otorgándole una mayor resistencia a la compresión, manteniendo la tendencia hasta los 28 días.

En conclusión, la proporción de los silicatos que se encuentran en cada tipo de cemento según su origen y fabricación determinan la resistencia mecánica en el trascurso de los días.

6.4 VERIFICACIÓN DE LA HIPÓTESIS DE INVESTIGACIÓN

HIPOTESIS

La diferencia en la resistencia a la compresión de los concretos se produce por efecto de la utilización de los diferentes tipos de cementos de mayor comercialización en la ciudad de Tacna, 2016.

Para la verificación de la hipótesis se considera los reportes de las Tablas N° 40, 41, 42, 43, 44 y 45 así como los Gráficos N° 1, 2, 3, 4,5 y 6 que permiten comprobar que la diferencia en la resistencia de los concretos son efectos de la utilización de diferentes tipos de cemento comercializados en la ciudad de Tacna por lo que se procede a su verificación de la siguiente manera:

- Según Tablas Nº 40, 41 y 42, Gráficos Nº 1, 2 y 3, se comprueba que la diferencia en la resistencia de los concretos a la compresión Vs. Tiempo a las edades de 7, 14 y 28 días, según el Método ACI-Comité 21 con agregado redondeado, son efectos de la utilización de los diferentes tipos de cemento comercializados en la ciudad de Tacna: Sol Portland Tipo-I, Yura Tipo HE Tipo III–Alta Resistencia Inicial, y Portland Puzolánico Yura IP-Alta Durabilidad. Tipo II
- Según Tablas Nº 43, 44 y 45, Gráficos Nº 4, 5 y 6, se comprueba que la diferencia en la resistencia de los concretos a la compresión Vs. Tiempo a las edades de 7, 14 y 28 días, según el Método Walker con agregado angular, son efectos de la utilización de los diferentes tipos de cemento comercializados en la ciudad de Tacna: Sol Portland Tipo-I, Yura Tipo

HE–Alta Resistencia Inicial, y Portland Puzolánico Yura IP-Alta Durabilidad.

Por lo tanto, se procede a ACEPTAR la Hipótesis de investigación planteada.

CAPITULO VII

PROPUESTA DE REDISEÑO

7.1 DENOMINACIÓN DE LA PROPUESTA DE MEJORA

"REDISEÑO DE DOSIFICACIÓN PARA LA RESISTENCIA DE CONCRETO A LA COMPRESIÓN EN BASE A LA APLICACIÓN DE UN NUEVO FACTOR DE DESVIACIÓN"

7.2 FUNDAMENTACIÓN

Considerando que los resultados del estudio de la rotura de testigos de concreto sometidos a compresión son altos en base a la aplicación de la tabla de selección de la resistencia requerida (F´cr = 210 +84), entonces es importante realizar una propuesta de rediseño de mezcla con la inclusión de la desviación como un factor que va a permitir optimizar la dosificación de los materiales generando como resultado final la optimización técnica y eficiencia económica en un proceso de construcción.

Con los datos obtenidos de los ensayos a compresión, se logra optimizar la receta del metro cúbico del diseño que se prepara y debería suministrarse a cualquier obra en la ciudad de Tacna.

En el caso nuestro la desviación estándar obtenida fluctúa entre 2.6 y 10.20, que es una desviación estándar baja; esto se debe a que en la fase de experimentación se tomaron todas las medidas de control de dosificación,

preparación y colocación de la mezcla fresca de concreto en las probetas tal como lo recomienda el ACI, evitando cometer alteraciones que pudieran provocar dispersión en nuestros resultados.

Una vez obtenido los resultados estos nos servirán para optimizar el diseño de mezcla teórico primigenio, debiendo utilizarse para el nuevo rediseño la desviación estándar obtenida; que incorporando la probabilidad de error material del proceso de elaboración del concreto en obra debería ser de 20 kg/cm2 @ 25 kg/cm2, para la obtención de un concreto de resistencia especificada F´c= 210 kg/cm2.

El rediseño permitirá a cualquier Entidad o Contratista, ser más competitivos en costos, evitando realizar sobrecostos en la producción final de un metro cubico de concreto; dado que estamos colocando lo requerido y eliminando el exceso de algún componente.

7.3 OBJETIVO

Rediseñar la dosificación para la resistencia de concreto a la compresión en base a la aplicación de un nuevo factor de desviación

7.4 CALCULO DE LA RESISTENCIA PROMEDIO

7.4.1 Calculo de la Resistencia Requerida

Esta resistencia requerida se utilizará para ambos casos de diseño Método ACI-Comité 211 y Método Walker.

Entonces reemplazando en la fórmula de la Tabla 23

$$f'cr = 210 + 1.34(25) = 244$$

 $f'cr = 210 + 2.33(25) - 35 = 233$
 $f'cr = 244 \, kg/cm2$

7.4.2 Selección del Tamaño Máximo Nominal del Agregado Grueso

El Tamaño Máximo Nominal lo obtenemos como resultado de nuestra granulometría del agregado grueso redondeado de la tabla 12, siendo de 1/2".

7.4.3 Selección del Asentamiento

El asentamiento seleccionado será de 3" a 4", este asentamiento es utilizado en vigas, columnas y muros armados, siendo un asentamiento de consistencia plástica.

7.4.4 Selección del Volumen Unitario de Agua de Diseño.

En este caso el volumen unitario de agua lo obtenemos de la tabla elaborada por el ACI-Comité 211.

TABLA N° 48
REQUERIMIENTOS APROXIMADOS DE AGUA DE
MEZCLADO Y CONTENIDO DE AIRE PARA DIFERENTES
VALORES DE ASENTAMIENTO Y TAMAÑOS MÁXIMOS DE
AGREGADOS

ASENTAMIENTO O SLUMP (mm)		Agua en lt/m^3 de concreto para los tamaños máximos de agregados gruesos y consistencia indicados.							
		10mm (3/8")	12.5mm	20mm	25mm	40mm	50mm	70mm	150mm
			(1/2")	(3/4")	(1")	(11/2")	(2")	(3")	(6")
		CONC	RETOS S	IN AIRE	INCORP	ORADO			
30 a 50	(1" a 2")	205	200	185	180	160	155	145	125
80 a 100	(3" a 4")	225	215	200	195	175	170	160	140
150 a 180	(6" a 7")	240	230	210	205	185	180	170	
Cantidad aproximada de aire atrapado (%).		3	2.5	2	1.5	1	0.5	0.3	0.2
	CONCRETOS CON AIRE INCORPORADO								
30 a 50 80 a 100	(1" a 2") (3" a 4")	180 200	175 190	165 180	160 175	145 160	140 155	135 150	120 135
150 a 180	(6" a 7")	215	205	190	185	170	165	160	
Contenido total de aire incorporado (%), en función del grado de exposición.	Exposición suave	4.5	4.0	3.5	3.0	2.5	2.0	1.5*	1.0*
	Exposición moderada	6.0	5.5	5.0	4.5	4.5	4.0	3.5*	3.0*
	Exposición severa	7.5	7.0	6.0	6.0	5.5	5.0	4.5*	4.0*

Fuente: ACI- Comité 211

Ingresando a la tabla de doble entrada, elaborada por el ACI-Comité 211; para un asentamiento de 3" a 4" y un Tamaño Máximo Nominal de 1/2", obtenemos un volumen unitario de agua de 215 Lt/m3.

7.4.5 Selección del Contenido de Aire Atrapado.

El aire atrapado lo seleccionamos de la Tabla 25, en porcentaje de acuerdo a nuestro Tamaño Máximo Nominal, siendo:

TABLA N° 49 AIRE ATRAPADO SEGÚN TAMAÑO MÁXIMO NOMINAL

Tamaño Máximo Nominal	Aire Atrapado
Del Agregado grueso.	•
3/8"	3.0 %
1/2"	2.5 %
3/4"	2.0 %
1"	1.5 %
1 ½"	1.0 %
2"	0.5 %
3"	0.3 %
4"	0.2%

Fuente: ACI –Comité 211

Nuestro Tamaño Máximo Nominal es de 1/2, por lo tanto el porcentaje de aire atrapado será de 2.5%.

7.4.6 Selección de la Relación Agua/Cemento (a/c) por Resistencia a Compresión.

No presentándose en este caso problemas de intemperismo ni de ataques por sulfatos, u otro tipo de acciones que pudieran dañar al concreto, se utilizara la relación agua-cemento por resistencia.

TABLA N° 50 RELACIÓN AGUA – CEMENTO POR RESISTENCIA A LA COMPRESIÓN

RESISTENCIA A LA COMPRESION	RELACION AGUA/CEMENTO DE DISEÑO EN PESO			
A LOS 28 DIAS (f'cr) (kg/cm2)*	CONCRETO SIN AIRE INCORPORADO	CONCRETO CON AIRE INCORPORADO		
450	0.38			
400	0.43			
350	0.48	0.40		
300	0.55	0.46		
250	0.62	0.53		
200	0.70	0.61		
150	0.80	0.71		

Fuente: ACI -Comité 211

Ingresando a la tabla; vemos que para una f'c = 294Kg/cm2, y concreto sin aire incorporado obtenemos por regla de tres simple con límite superior e inferior una relación agua cemento de:

Se interpola los valores para hallar la relación a/c:

$$\frac{200 - 250}{0.70 - 0.62} = \frac{200 - 244}{0.70 - X}$$

Despejando X, se obtiene:

$$X = 0.70 - \frac{44 * 0.08}{50}$$

$$X = 0.63$$

7.4.7 Determinación del Factor Cemento.

El factor cemento se obtiene dividiendo el volumen unitario de agua entre la relación agua-cemento.

$$Factor\ Cemento = \frac{\textit{Volumen\ Unitario}}{a/c}$$

$$Factor\ cemento = \frac{215\ Lt/m3}{0.63}$$

Factor cemento = 341 Kg/m3

Entonces tenemos que el factor cemento o la cantidad de cemento es de 341 Kg/m3. (Lo mismo que decir que se necesitara 341 kilogramos de cemento para elaborar 1 m3 de concreto).

7.4.8 Determinación del Contenido de Agregado Grueso.

La determinación del contenido del agregado grueso se obtiene mediante la utilización de tablas. Se identifica el módulo de fineza del agregado fino y el Tamaño Máximo Nominal.

TABLA N° 51 VOLÚMEN DE AGREGADO GRUESO POR UNIDAD DE VOLÚMEN DE CONCRETO

TAMAÑO MAXIMO DEL AGREGADO GRUESO		Volumen de agregado grueso, seco y compactado por unidad de volumen de concreto, para diferentes módulos de fineza del agregado fino. MODULO DE FINEZA DEL AGREG. FINO					
mm.	Pulg.	2.40	2.60	2.80	3.00		
10	3/8"	0.50	0.48	0.46	0.44		
12.5	1/2"	0.59	0.57	0.55	0.53		
20	3/4"	0.66	0.64	0.62	0.60		
25	1"	0.71	0.69	0.67	0.65		
40	1 ½"	0.76	0.74	0.72	0.70		
50	2"	0.78	0.76	0.74	0.72		
70	3"	0.81	0.79	0.77	0.75		
150	6"	0.87	0.85	0.83	0.81		

Fuente: ACI -Comité 211

Con los valores obtenidos en laboratorio, el número que representa el módulo de fineza es de 3.1, como este valor no se encuentra en la tabla tenemos que dar el valor según la progresión aritmética que disminuye en 0.02, para posteriormente interpolar y obtener la relación de agregados.

Según la progresión aritmética para un módulo de fineza de 3.1 y un Tamaño máximo Nominal de 1/2" el valor es de 0.52

Este valor lo aplicamos a la relación:

$$Cont. Agr. Grueso = \frac{b}{b_o} xP.U.C. Agr. Grueso$$

$$Cont.Agr.Grueso = 0.52 * 1500 = 780Kg/m3$$

7.4.9 Determinación de la suma de los Volúmenes Absolutos de Cemento, Agua de Diseño, Aire y Agregado Grueso, y Peso del Agregado Fino.

Hasta este punto se conoce el peso del cemento, agua y agregado grueso, así como el volumen de aire atrapado; por lo tanto podemos calcular la suma de los volúmenes absolutos:

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

	Dato de Diseño	Peso Específico	Volumen
Cemento	341	2850	0.120
Agua	215	1000	0.215
Aire Atrapado	2.5	1000	0.025
Ag. Grueso	780	2680	0.291
Ag. Fino		2660	0.349

Peso de Ag. Fino = 928 Kg/m3

7.4.10 Correcciones por Humedad y Absorción.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

Procedemos a realizar la corrección por humedad y absorción del agregado.

Debemos tener en cuenta que solo hemos obtenido los valores de agregado en estado seco:

Peso H. del Ag. Fino =
$$928Kg/m3 * 1.014 = 941 Kg/m3$$

Peso H.del Ag. Grueso =
$$780Kg/m3 * 1.009 = 787Kg/m3$$

Determinamos la humedad superficial del agregado fino y grueso:

$$Agregado\ Fino = 1.37 - 1.58 = -0.21\%$$

$$Agregado\ Grueso = 0.9 - 1.00 = -0.1\%$$

Calculamos el aporte de humedad:

$$Agregado\ Fino = 928x(-0.0021) = -2Lt/m3$$

$$Agreado\ Grueso = 780x(-0.001) = -0.8Lt/m3$$

Aporte total de humedad de agregados = -2.8Lt/m3

150

Por lo tanto como el agregado no presenta aporte de humedad, tendremos que aumentar a la cantidad de agua obtenida inicialmente para tener el agua efectiva:

Agua efectiva = 215Lt/m3 + 2.8Lt/m3 = 218Lt/m3

Entonces los pesos de los materiales corregidos serán los siguientes:

Cemento = 341 kg/m3

Agua efectiva = 218Lt/m3

Agregado Fino = 941 Kg/m3

Agregado Grueso = 787 Kg/m3

Para la determinación de la proporción en peso, todos los componentes de concreto se dividen entre la cantidad de cemento.

Cemento = 341 / 341

Agregado Fino = 941/341

Agregado Grueso =787 /341

Dando como resultado:

1:2.76:2.31:0.64

7.4.11 Presentación Final del Diseño

Este diseño se presenta en tandas de acuerdo a la capacidad de la mezcladora que se tiene en el laboratorio.

A. Cemento Portland Puzolánico Yura IP-Alta Durabilidad

COMPONENTE	kg/1m3	
Cemento	341	Kg.
Agua Efectiva	218	Lt.
Ag. Fino	941	Kg.
Ag. Grueso	787	Kg.

7.5 CONCLUSIÓN

- a) Con la presente fórmula se logra calcular una nueva resistencia promedio utilizando la desviación estándar.
- b) Con la adecuada y pertinente aplicación de la fórmula se logra la optimización técnica y eficiencia económica en un proceso de construcción.

CAPITULO VIII

CONCLUSIONES Y RECOMENDACIONES

8.1 CONCLUSIONES

Primera: La diferencia en la resistencia de los concretos se dan, por efecto de la utilización de los distintos tipos de cemento comercializados en la ciudad de Tacna en donde:

- El concreto elaborado con cemento Sol Portland Tipo-I obtiene una mejor resistencia inicial a los 7 días que los concretos elaborados con los cementos Yura HE – Alta Resistencia Inicial y Portland Puzolánico Yura IP-Alta Durabilidad.
- El concreto elaborado con cemento Yura HE Alta Resistencia Inicial supera en resistencia a los 14 días al concreto elaborado con cemento Sol Portland Tipo-I, manteniendo esa tendencia también a los 28 días.
- El concreto que alcanza menor resistencia es el elaborado con el cemento
 Portland Puzolánico Yura IP-Alta Durabilidad.

Segunda: El análisis de las propiedades físicas de los agregados (granulometría y módulo de fineza, peso específico y absorción, peso unitario suelto y compactado) han sido elaborados de acuerdo a la norma ASTM C-33 o NTP. 400.037, ya que el agregado forma aproximadamente las tres cuartas partes del

volumen del concreto por lo que su calidad es de suma importancia y sus propiedades influyen en el desempeño del concreto.

Tercera: La elaboración de los diseños de mezcla por los Métodos ACI-Comité 211 con agregado redondeado, y diseño de mezcla Método Walker con agregado angular, basado en algunas tablas nos han permitido diseñar las mezclas de una manera sencilla siempre en cuando se conozcan las definiciones y propiedades de los materiales integrantes.

Cuarta: La resistencia de los concretos a la compresión con diferentes diseños de mezcla según el tipo de cemento nos ha determinado lo siguiente:

Según Diseño por Método ACI-Comité 211, Agregado Redondeado

- A la edad de 7 días el concreto elaborado con cemento Sol Portland Tipo-I, alcanza un 3.86% de resistencia mayor que el concreto elaborado con cemento Yura Tipo HE–Alta Resistencia Inicial, y que este a su vez alcanza un 6.03% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad.
- A la edad de 14 días, el concreto elaborado con cemento Sol Portland Tipo-I, obtiene una resistencia inferior y es superada en 1.3% a la resistencia del concreto elaborado con cemento Yura Tipo HE Alta Resistencia Inicial, y que este a su vez alcanza un 36.28% de resistencia mayor que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad; También se aprecia una desaceleración en la ganancia de resistencia.

• A la edad de 28 días el concreto elaborado con cemento Sol Portland Tipo-I, obtiene una resistencia inferior y es superada en un 1.66% a la resistencia del concreto elaborado con cemento Yura Tipo HE-Alta Resistencia Inicial y que este a su vez alcanza un 49.37% de resistencia mayor que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad; también se aprecia que se mantiene la tendencia en la desaceleración de la ganancia de resistencia.

Según Diseño por Método Walker, Agregado Angular

- A la edad de 7 días el concreto elaborado con cemento Sol Portland Tipo-I alcanza un 0.69% de resistencia mayor que el concreto elaborado con cemento Yura Tipo HE-Alta Resistencia Inicial, y que este a su vez alcanza un 23.19% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad; en comparación a los resultados del Grafico Nº 01 este diseño de mezcla alcanza mayor resistencia a la misma edad por el tipo de agregado grueso utilizado y por la proporción mayor de agregado fino.
- A la edad de 14 días el concreto elaborado con cemento Sol Portland Tipo-I obtiene una resistencia inferior y es superada en un 4.69% a la resistencia del concreto elaborado con cemento Yura Tipo HE—Alta Resistencia Inicial, y que este a su vez alcanza un 69.65% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad. También se aprecia una desaceleración en la ganancia de resistencia; y, en comparación a los resultados del Gráfico N° 2 este diseño de mezcla alcanza

mayor resistencia a la misma edad por el tipo de agregado grueso utilizado y por la proporción mayor de agregado fino.

• A la edad de 28 días en concreto elaborado con cemento Sol Portland Tipo-I obtiene una resistencia inferior y es superada en un 8.5% a la resistencia del concreto elaborado con cemento Yura Tipo HE-Alta Resistencia Inicial, y que este a su vez alcanza un 64.9% de mayor resistencia que el concreto elaborado con cemento Portland Puzolánico Yura IP-Alta Durabilidad. También se aprecia que se mantiene la tendencia en la desaceleración de la ganancia de resistencia, y en comparación con el Gráfico N° 3 este diseño de mezcla alcanza mayor resistencia a la misma edad por el tipo de agregado grueso utilizado y por la proporción mayor de agregado fino.

8.2 **RECOMENDACIONES**

Primera: Realizar adecuados estudios comparativos con diferentes diseños de mezcla para obtener una adecuada resistencia del concreto con diferentes tipos de cementos comercializados en la ciudad de Tacna.

Segunda: Elaborar un análisis minucioso de las propiedades físicas de los agregados (granulometría y módulo de fineza, peso específico y absorción, peso unitario suelto y compactado) para los diferentes diseños de mezcla de concreto, de acuerdo a la norma ASTM C-33 o NTP 400.037-

Tercera: Promover la importancia y significado que tiene el proceso de fabricación del concreto aplicando los diseños de mezcla por los Métodos ACI-Comité 211, y diseño de mezcla Método Walker, ya que resultan más funcionales porque se basan en tablas y permiten diseñar las mezclas de una manera sencilla siempre en cuando se conozcan las definiciones y propiedades de los materiales integrantes, con un adecuado control y supervisión en la dosificación de agregados, agua y cemento.

Cuarta: Utilizar el cemento Sol Portland Tipo-I y el cemento Yura Tipo He- Alta Resistencia Inicial si se quiere alcanzar altas resistencias a tempranas edades en el fraguado.

Quinta: Utilizar cemento Portland Puzolánico Yura IP-Alta Durabilidad, si se requiere un concreto más durable, si bien es cierto no alcanza grandes resistencias como los otros cementos en corto tiempo, pero gana la propiedad ya antes mencionada en el largo tiempo.

Sexta: Promover la investigación tecnológica práctica que permita proporcionar información sobre el comportamiento de los concretos elaborados con agregados de canteras locales y los cementos más comercializados en Tacna en donde los datos que se obtengan de los ensayos a compresión de la resistencia del concreto versus el tiempo permitirá afianzar los conocimientos acerca de estos.

BIBLIOGRAFIA

ALVAREZ CANGAHUALA, José. (2013) Diseño de Mezclas. Lima-Perú

BUNGE MARIO (1962), La Investigación Científica, Barcelona, Ediciones Ariel (Primera)

CAPECO. (2016). Reglamento Nacional de Edificaciones. Norma E-060, Concreto Armado, Artículo 4.12 y 4.15, Lima.

CARRILLO SIANCAS, Shirley Marina. (2003). Estudio Comparativo Entre Tecnologíaas de Producción de Concreto: Mixer y Dispensador, Tesis para Optar el Título de Ingeniero Civil, Piura – Perú.

CASTELLON CORRALES, Harold. DE LA OSSA ARIAS, Karen. (2013). Estudio Comparativo a la Compresión de los Concretos Elaborados con Cementos Tipo I y Tipo III, Modificados con Aditivos Acelerantes y Retardantes, Proyecto de Grado presentado como requisito para Optar al Título de Ingeniero Civil. Cartagena- Colombia.

CORCINO ALBORNOZ, Vanesa. (2007). Estudio Comparativo de Concreto Simple y Reforzado con Fibras de Acero Dramix y Wirand, Empleando Cemento Andino Tipo V", Tesis para Optar el Título de Ingeniero Civil, Lima –Perú.

MINISTERIO DE VIVIENDA CONSTRUCCION Y SANEAMIENTO (2006), El Peruano Normas Legales, Norma E.060, Concreto Armado, Articulo 2. Definiciones y Abreviaturas. Lima – Perú.

NORMA ASTM - Manual de Ensayos de Materiales EM 2000- referencia ASTM y NTP

NORMA ASTM C-33 del American Concrete Institute

NORMAS DEL AMERICAN CONCRETE INSTITUTE (ACI), Instituto Americano del Concreto.

NORMA ITINTEC: Cemento 334.01, 334.04, Agregados 400.037, 400.011; Concretos 400.002, Ensayos 339.033, 339.036, 339.034 ASTM 192

NORMA TECNICA PERUANA NTP 334.090 ASTM C-595, Cemento Portland Puzolánico

NORMA TECNICA PERUANA NTP 334.082, Cemento Portland

OTTAZZI PASINO, GIANFRANCO, (2004) Material de Apoyo para la Enseñanza de Cursos de Diseño y Comportamiento del Concreto Armado-Lima – Perú

RIVVA LOPEZ, ENRIQUE (2000) Naturaleza y Material del Concreto, Capitulo Peruano ACI, Lima- Perú

RIVVA LOPEZ, ENRIQUE (2010) Diseño de Mezclas de Concreto, Editorial ICG, Lima-Perú

VALDIVIA DUEÑAS Raúl y VALDIVIA TAPIA Yanira. (2012). El Proyecto de Investigación. Tacna.

VALDIVIA DUEÑAS Raúl. (2012). La Normalización en la Investigación Científica. Tacna.

ANEXOS

ARCHIVO DE IMAGENES

TRANSPORTE DE AGREGADOS

IMAGEN Nº 1

TRANSPORTE DEL AGREGADO

Los agregados extraídos de las canteras del cono sur y comercializados en los depósitos, se transportó en volquetes y fueron depositados en las áreas contiguas al laboratorio de Mecánica de Suelos de la Universidad Privada de Tacna.

Se aprecia el momento de descargue.

ENSAYOS DE LOS AGREGADOS EN LABORATORIO

IMAGEN Nº 2

CONTENIDO DE HUMEDAD AGREGADO FINO

Se aprecia el cuarteo o reducción del agregado fino para la selección de la muestra representativa según Norma ASTM C 702.

Se aprecian las muestras seleccionadas en su respectiva tara pesadas para ser colocadas en el horno

Se aprecia el horno del laboratorio de Mecánica de Suelos de la Universidad Privada de Tacna donde se colocaron las muestras para el secado del agregado fino.

Se aprecian las muestras retiradas del horno después de 24 hrs. a una temperatura de 100°C para su posterior pesado.

IMAGEN Nº 3

CONTENIDO DE HUMEDAD AGREGADO GRUESO REDONDEADO

Se aprecia los materiales y equipos utilizados para la realización del ensayo. (agregado seleccionado por cuarteo, balanza, taras, cucharon)

Se aprecian las muestras seleccionadas en su respectiva tara después del pesado

-Se aprecia el procedimiento de pesado de muestras de agregado grueso redondeado después de haberlos retirado del horno tras una permanencia de 24 hrs a 100°C.

IMAGEN Nº 4

CONTENIDO DE HUMEDAD AGREGADO GRUESO ANGULAR

Se aprecia el cuarteo o reducción del agregado fino para la selección de la muestra representativa según Norma ASTM C 702.

Se aprecia la muestra pesada en su tara para su posterior colocado en el horno por 24 hrs. a 100°C

IMAGEN Nº 5

GRANULOMETRIA DEL AGREGADO FINO

Se aprecia el procedimiento para determinar el análisis granulométrico de la siguiente manera:

Seleccionamos la muestra representativa de agregado fino (600 gr.) para su posterior tamizado.

Colocación del agregado fino para su posterior tamizado.

Tamizado por los tamices N°4, 8, 16, 30, 50, 100, 200 y fondo.

-Obtención de los pesos retenidos por cada tamiz empleado para la granulometría.

IMAGEN Nº 6

GRANULOMETRIA DEL AGREGADO GRUESO

Seleccionamos la muestra representativa de agregado Grueso (5500 gr.) para su posterior tamizado.

Tamices utilizados para la granulometría (1 $\frac{1}{2}$ ", 1", 4/4", $\frac{1}{2}$ ", 3/8", $\frac{1}{4}$ ", N°4, N°8)

Tamizado del agregado grueso

Obtención de los pesos retenidos por cada tamiz.

IMAGEN Nº 7 PESO ESPECÍFICO DEL AGREADO FINO

Agregado fino y grueso depositado en un balde y llenado con agua reposando por un tiempo de 24 hrs.

Secado del agregado fino para obtener la consistencia deseada para su posterior ensayo.

Agregado fino colocado dentro de la fiola con ayuda de un embudo.

Agregado fino con agua destilada sometido a baño maría, para la eliminación del aire para su posterior pesado.

IMAGEN Na 8

PESO ESPECÍFICO DEL AGREADO GRUESO

Agregado fino y grueso depositado en un balde y llenado con agua reposando por un tiempo de 24 hrs.

Pesado del Agregado grueso superficialmente seco.

Probeta con 500ml de agua para la observación del volumen desplazado por el agregado grueso

Volumen desplazado después de introducir el agregado grueso a la probeta.

IMAGEN Na 9

ABSORCION DEL AGREGADO FINO

Se muestra el agregado fino apisonado por 25 golpes dejando caer el pisón desde una altura de 1 cm. Para corroborar que se encuentre superficialmente seco.

Muestra caída en aproximadamente 1/3, lo cual nos indica que se encuentra en la condición requerida y no existe humedad libre.

IMAGEN Na 10 ABSORCION DEL AGREGADO GRUESO

Se aprecian los materiales empleados para la realización del ensayo

Muestra retenida por la malla N° 4, lavada para la eliminación de suciedad y parcialmente seca colocada en una canastilla previa a ser sumergida para obtener los datos necesarios para el posterior cálculo.

IMAGEN Nº 11

PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO FINO

Colocado del material representativo en el molde cilíndrico.

Pesado del molde con el agregado fino enrasado para la obtención del peso.

Llenado del molde cilíndrico cada 1/3 aplicando un compacte con la varilla de 25 veces distribuyendo la penetración en toda el área, sin golpear fuertemente el fondo.

Pesado del molde con el agregado ya compactado y enrasado para la obtención del peso.

IMAGEN Nº 12

PESO UNITARIO SUELTO Y COMPACTADO DEL AGREGADO GRUESO

Colocado del material representativo en el molde cilíndrico.

Pesado del molde con el agregado grueso enrasado para la obtención del peso.

Llenado del molde cilíndrico cada 1/3 aplicando un compacte con la varilla de 25 veces distribuyendo la penetración en toda el área, sin golpear fuertemente el fondo.

Pesado del molde con el agregado ya compactado y enrasado para la obtención del peso.

ELABORACION DE LOS ESPECIMENES CILINDRICOS DE COCNRETO

IMAGEN Nº 13

PESADO DE LOS AGREGAGOS

Pesado de la cantidad de cemento para la elaboración de los especímenes cilíndricos de concreto

Pesado de la cantidad de agregado fino para la elaboración de los especímenes cilíndricos de concreto.

Pesado de la cantidad de agregado grueso para la elaboración de los especímenes cilíndricos de concreto

Medición de la cantidad de agua necesaria para la elaboración de los especímenes cilíndricos de concreto

IMAGEN Nº 14

MATERIALES PARA LA ELABORACION DE LOS ESPECIMENES CILÍNDRICOS DE CONCRETO

Materiales utilizados para la elaboración de las muestras cilíndricas de concreto (Mezcladora, badilejos, carretilla, pala, cono de Abrams, martillo de jebe, varilla de acero, probetas cilíndricas)

Probetas cilíndricas utilizadas para la elaboración de las muestras

cilíndricas de concreto.

IMAGEN Nº 15

PROCEDIMIENTO PARA LA ELABORACION DE LOS ESPECIMENES CILINDRICOS DE CONCRETO

Medición del diámetro de las probetas en forma de cruz para obtener un promedio, que posteriormente será utilizada para los cálculos que se necesitan para encontrar la resistencia a la compresión del espécimen cilíndrico de concreto.

Aceitado de la probeta cilíndrica para facilitar el retito del espécimen cilíndrico de concreto después del fraguado.

Mezclado de los agregados en, dependiendo del diseño sobre el cual se está trabajando.

Vaciado de la mezcla a la carretilla para su traslado hacia las probetas cilíndricas.

Elaboración de la prueba del slump utilizando el cono de Abrams supervisado por el técnico laboratorista del laboratorio de Mecánica de Suelos de la Universidad Privada de Tacna

Medición del slump de la mezcla elaborada, la cual se encuentra dentro del rango sobre cual se hizo el diseño (3" a 4")

Elaboración de los especímenes cilíndricos evitando la segregación y varillando con 25 golpes cada 1/3 del a altura de la probeta cilíndrica.

Golpes con el martillo de jebe para la eliminación del aire que puede encontrarse dentro de las probetas cilíndricas para concreto.

30 probetas cilíndricas elaboradas y dejadas para su fraguado y desencofrado dentro de 24 hrs.

Especímenes cilíndricos de concreto desmoldadas al día siguiente de su elaboración.

Codificación de los especímenes cilíndricos de concreto (Método por el cual fue diseñado, tipo de cemento, nº de espécimen y fecha de elaboración)

Curado por inmersión de los especímenes cilíndricos de concreto durante las edades requeridas para sus posteriores ensayos a la compresión en las pozas de la Universidad Privada de Tacna.

IMAGEN Nº 16

ENSAYO A LA COMPRESION DE LOS ESPECIMENES CILINDRICOS DE CONCRETO.

Secado superficial de los 10 especímenes cilíndricos de concreto por 2 horas después de haber sido sacadas de las pozas del laboratorio según la codificación y edad de ensayo a la compresión.

Espécimen cilíndrico de concreto colocado con almohadillas de neopreno para la distribución uniforme de la carga ejercida por la prensa para ensayo de compresión

Espécimen cilíndrico de concreto sometido a la carga axial generara por la prensa para ensayo a la compresión monitoreada por el técnico laboratorista de la Universidad Privada de Tacna.

Rotura del espécimen cilíndrico de concreto por haber sido sometido a una carga a compresión

Resultados especificados por la prensa para ensayo a la compresión que denotan la fuerza aplicada en kgf.

Especímenes cilíndricos de concreto ensayados por día (10 und.) hasta cumplir con los 180 especímenes elaborados.

